Cat. No. W451-E1-03

SYSMAC CP Series
CP1H-X40D[I]-[|, CP1H-XA40D[I-[],
CP1H-Y20DT-D

AD| |- | » DD |

CP1H/CP1L CPU Unit

PROGRAMMING MANUAL

SYSMAC CP Series

CP1H-X40D[L -], CP1H-XA40DLI-L],
CP1H-Y20DT-D

CP1H CPU Units

CP1L-L14D[-], CP1L-L20DI-[],
CP1L-M30DLI-L], CP1L-M40DLI-[]

CP1L CPU Units

Programming Manual

Revised May 2007

Notice:

OMRON products are manufactured for use according to proper procedures
by a qualified operator and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this
manual. Always heed the information provided with them. Failure to heed pre-
cautions can result in injury to people or damage to property.

&DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury. Additionally, there may be severe property damage.

&WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury. Additionally, there may be severe property damage.

&Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References

Visual Aids

Note

1,2,3...

© OMRON, 2005

All OMRON products are capitalized in this manual. The word “Unit” is also
capitalized when it refers to an OMRON product, regardless of whether or not
it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON
products, often means “word” and is abbreviated “Wd” in documentation in
this sense.

The abbreviation “PLC” means Programmable Controller. “PC” is used, how-
ever, in some CX-Programmer displays to mean Programmable Controller.

The following headings appear in the left column of the manual to help you
locate different types of information.

Indicates information of particular interest for efficient and convenient opera-
tion of the product.

1. Indicates lists of one sort or another, such as procedures, checklists, etc.

All rights reserved. No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any form, or

by any means, mechanical,

OMRON.

electronic, photocopying, recording, or otherwise, without the prior written permission of

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is con-
stantly striving to improve its high-quality products, the information contained in this manual is subject to change without
notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility
for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in

this publication.

Unit Versions of CP-series CPU Units

Unit Versions

Notation of Unit Versions
on Products

Confirming Unit Versions
with Support Software

Note

Note

Vi

A “unit version” has been introduced to manage CPU Units in the CP Series
according to differences in functionality accompanying Unit upgrades.

The unit version is given to the right of the lot number on the nameplate of the
products for which unit versions are being managed, as shown below.

CP-series CPU Unit
Product nameplate B

CP1H-XA40DR-A

CPU UNIT

Lot No. 28705 0000 Ver.1.0)

OMRON %poration MASE IN JAPAN
/ \

Lot No. Unit version
(Example for Unit version 1.0)

The methods used to confirm the unit version for the CP-series CP1H and
CP1L CPU Units are somewhat different.
CP1H CPU Units

CX-Programmer version 6.1 or higher can be used to confirm the unit version
using one of the following two methods. (See note.)

» Using the PLC Information
¢ Using the Unit Manufacturing Information

CX-Programmer versions lower than version 6.1 cannot be used to confirm
unit versions for CP1L CPU Units.

CP1L CPU Units

CX-Programmer version 7.1 or higher can be used to confirm the unit version
using the PLC Information. (See note.) The Unit Manufacturing Informa-
tion cannot be used.

CX-Programmer versions lower than version 7.1 cannot be used to confirm
unit versions for CP1L CPU Units.

M PLC Information

Procedure When the Device Type and CPU Type Are Known
1,2,3... 1. If you know the device type and CPU type, select them in the Change PLC
Dialog Box, go online, and select PLC - Edit - Information from the
menus. The following Change PLC Dialog Box will be displayed.

Example for CP1H

Change PLC |

— Device Mame

[MewPLLT

— Device Type
|cP1H v| Settings...

~[CPIL
CPMT[CPM14)
CPM2*

| CPM2:5* —
oMt

_ Selings.._|

__Setings.._|

Ca e
[~
_ teb |

Settings...

Cs10-H hd

(] I Cancel | Help

Example for CP1L

— Device Mame

{HewPLCT

— Device Type
|cPiL | Settings...

| CPMTCPMTA)
CPh2"
CPh2e5¢
—|CaMT

[CEMTH

_ Setings.._|

_ setings.._ |
[

_ M|

Settings...

C510-5 hd

(] I Cancel Help

Vil

2. Click the Settings Button and, when the Device Type Settings Dialog Box
is displayed, select the CPU type.

Example for CP1H

Device Type Settings [CP1H] x|
General |
—CPU Type
& =
= T,
I‘ZUI == I | I_ Read Dn'_'rl

— Expanzion kemon

I j [T Fead/@nly

— File kermony
I j ™| Bead Dy

— Timer ¢ Clock,
¥ | [rstalled

b ake Default |
QE. I Cancel | Help |

Example for CP1L

Device Type Settings [CP1L] x|
General
—CPU Tope
M [
I L]
B T_
[10K [Step] | T ReadOnly
— Expanzion kemomn
I j ™| Fead Orly
— File kermony
I j [T Read @l
— Timer £ Clock
¥ [rstalled
take Default |
Ok I Cancel | Help

viii

3. Go online and select PLC - Edit - Information

The PLC Information Dialog Box will be displayed.
Example for the CP1H

PLC Information - NewPLC1 x|

—

Example for the CP1L

PLC Information - NewPLC1 x|

Project PLC type: CPIL M

—&ctual Charactenistics

Tupe: CPILM
Wit “er.: E; IEit version
Frogram memory: 11264 Steps
|Jzeable: 10646 Steps
Protected: Mo
Memany type:
File/mernaory card: MHa
[ata memary: 327ER Words
Extenzion: 0 Kwiords
EM barks: 0
Bank size: - Words
100 mnnary: 11.5 Fafords
Tirmner/counters: 8 Kwiords

— Manufacturing Detail:

Fevizion &

FCE Rewizion By
Software Revision &4 0
Lot Murnber 070323

b anufacturing

Sernial Mumber

Use the above display to confirm the unit version of the CPU Unit.

Procedure When the Device Type and CPU Type Are Not Known

This procedure is possible only when connected directly to the CPU Unit with
a serial connection.

If you don't know the device type and CPU type but are connected directly to
the CPU Unit on a serial line, select PLC - Auto Online to go online, and then
select PLC - Edit - Information from the menus.

The PLC Information Dialog Box will be displayed and can be used to confirm
the unit version of the CPU Unit.

PLC Information - NewPLC1 x|

Project PLC type: CPTH ¢

—&ctual Characternistics

Type: CF1H
Uriit Yer.: E; Iﬂ“t version
Proaram mamnary: 21504 Steps
|Jzeable: 20336 Steps
Pratected: Mo
Memory type:
File/memony card: Mo
Data memaony; 327E3 Wiords
Extension: a0 Kwfords
EM banks: 1]
Bank size: - Words
10 meman; 115 Fiwiords
Timer/counters: g Kwfords

— Manufacturing Details

Revizion &,

FCE Revizion BCD
Software Revigion Ad 0
Lot Murnber 050713

M anufacturing

Senial Mumnber

B Unit Manufacturing Information (CP1H CPU Units Only)

1,2,3... 1. In the IO Table Window, right-click and select Unit Manufacturing infor-
mation - CPU Unit.

7 1 PLC ID Table - NewPLC1 =10l =]

File Edit Yew Options Help

W Inner Board LIt Manuf acturing information

"W [0000] Main Ra Dip Switch Information
Start Special Application 3

CP1H-#40DR-4 |Run o

Xi

2. The following Unit Manufacturing information Dialog Box will be displayed.

Unit Manufacturing Information 21|
File Help

— Manufacturing Detailz

Revision

PCE Rewizion
Software Revision
Lat Murnber 050713

W anufacturing 10

LA

Serial Mumnber
Unit Wer. 1.0 Unit version
Uit Text

There iz no Memon Card installed

[cPtH-2 Run

Use the above display to confirm the unit version of the CPU Unit connected
online.

Using the Unit Version The following unit version labels are provided with the CPU Unit.
Labels

[ver. 1.0 | [Ver

—

(ver.1.0] [ver

—

N=TavF7yFIc&kba=y b
DEEKEDERZEET L1
DINILTT,

WEIZHLT, HEORIEICAEY
T IERACESL,

These Labels can be
used to manage
differences in the
available functions
among the Units.
Place the appropriate
label on the front of
the Unit to show what
Unit version is actually
being used.

These labels can be attached to the front of previous CPU Units to differenti-
ate between CPU Units of different unit versions.

Xii

TABLE OF CONTENTS

PRECAUTIONS. ... XXiii
1 Intended AUTIENCE. oo XXiV
2 General PreCaltions. oot e XXiV
3 Safety Precaltions.o e XXiV
4 Operating Environment PreCautionsot XXVi
5 Application PreCautions.ottt e XXVil
6 Conformanceto EC DIreCtiVeSot e e e e XXX
SECTION 1
ProgrammingConcepts.coiviiinnn...
1-1 Programming CONCEPLS. . . . oottt et et e e e e 2
1-2 PreCAULIONSottt e ettt e et e e et e e e 33
1-3 Checking Programso e e 41
1-4 Introducing FUNCtion BIOCKSot e 46
SECTION 2
Tasks ... e 49
2-1 Programming With Tasks oottt 50
2-2 USING TaSKS . . ottt 58
2-3 INEITUPE TaSKS . . o . ottt e 68
2-4 CX-Programmer Operationsfor Taskso e 75
SECTION 3
INSLFUCLIONS. . ..o e 77
3-1 Notation and Layout of Instruction Descriptions, 86
3-2 Sequence INPUE INSIIUCLIONS. oottt e e e e 89
3-3 Sequence OULPUL INSLIUCLIONS o .ottt e e e e e e 113
3-4 Sequence Control INSIFUCLIONS.ot tee eeeeeeeen 132
3-5 Timer and Counter INSIIUCLIONS.ot e 168
3-6 Comparison INSIIUCLIONS oot e e e e e 209
3-7 DataMovement INSIrUCHIONSttt e e 247
3-8 DataShift INStrUCtioNS.o 274
3-9 Increment/Decrement INSIIUCLIONS.ottt 320
3-10 Symbol Math INSIrUCLIONS oo e 336
3-11 Conversion INSTUCLIONS.ot e e et 389
312 LOgiCINStrUCtiONSot 436
3-13 Speciad Math Instructionso e 451
3-14 Floating-point Math INStruCtions.t 472
3-15 Double-precision Floating-point INStructionst 525
3-16 TableDataProcessing INSrUCtiONS oot eeeeeeeeeeeeen 567
3-17 DataControl INSITUCHIONS.ottt e e e e e 615

Xiii

Xiv

TABLE OF CONTENTS

3-18 SUDIOULINES . . . oottt e e e e e 668
3-19 Interrupt Control INSIFUCLIONS oot e e e 692
3-20 High-speed Counter/Pulse Output INStructions. 705
321 SEP INSLIUCLIONS . .. oottt et e et e e e e e e e e 751
3-22 BasiC /O UNIt INSIUCLIONSo e e e e et e e 769
3-23 Serial CommunicationS INSIIUCLIONS oot 805
3-24 Network INSIrUCLIONS oo 844
3-25 Display INStrUCLIONS. oo e 911
3-26 CloCK INStTUCIONSot e e e e 918
3-27 Debugging INSIrUCLIONS« .ottt e e e e e 932
3-28 Failure DiagnosiS INStrUCHIONS.ot 936
3-29 Other INSITUCLIONS oo e e e e e e e e 961
3-30 Block Programming INStructions.t e e e e e e 975
3-31 Text String Processing INStrUCtioNS. oottt e e e 1008
3-32 Task Control INSErUCHIONS. oo e e e e et e 1040
3-33 Model Conversion INSIFUCHIONSottt e e 1047
SECTION 4
I nstruction Execution Timesand Number of Steps. 1065
4-1 Instruction Execution Timesand Number of Steps. i 1066
4-2 Function Block Instance Execution Timeo 1088
Appendices
A Instruction Classificationsby Function 1091
B Listof Instructionsby FunctionCode ... 1099
C Alphabetical List of Instructionsby Mnemonic, 1115
INAEX. ..o 1129
Revison History ... i 1139

About this Manual:

This manual describes programming the CP-series Programmable Controllers (PLCs) and includes
the sections described below. The CP1H and CP1L are advanced package-type PLCs based on
OMRON's advanced control technologies and vast experience in automated control.

Please read this manual carefully and be sure you understand the information provided before
attempting to install or operate a CP1H or CP1L PLC. Be sure to read the precautions provided in the
following section.

Definition of the CP Series

The CP Series is centered around the CP1H and CP1L CPU Units and is designed with the same
basic architecture as the CS and CJ Series. The Special I/O Units and CPU Bus Units of the CJ Series
can thus be used with the CP1H CPU Units. CJ-series Basic I/O Units, however, cannot be used.
Always use CPM1A Expansion Units or CPM1A Expansion 1/O Units when expanding the I/O capacity
of CP1H or CP1L PLCs.

I/O words are allocated in the same way as the CPM1A/CPM2A PLCs, i.e., using fixed areas for inputs
and outputs.

CS/CJICP Series

CS1-H CPU Units

CS1H-CPULIH CJ1H-CPULITH CP1H-XICET-]
CS1G-CPULILH CJ1G-CPULILH CP1H-XALOOE-0
CJ1G -CcPULIOP CP1H-YOOOO-O

CS1 CPU Units _ (Loop CPU Unit)

CS1H-CPUCT (-V1)

CS1G-CPUTT (1) CJ1M CPU Unit CP1L CPU Unit

CJ1IM-CPULI] CP1L-L14D[-[]

CS1D CPU Units CP1L-L20DC-[]
CP1L-M30D[-]

CS1D CPU Units for
" CJ1 CPU Unit CP1L-M40DT -1

CJ1G-CcPULI

/

CS1D CPU Units for
' Single-CPU System '

CP-series Expansion I/0 Units
CS1D-CPULITIP
S S ‘CP-series Expansion Units ‘
‘CS-series Basic I/0 Units ‘ ‘CJ-series Basic I/0 Units ‘ ‘CPMlA Expansion 1/O Units ‘
‘CS-series Special I/0 Units ‘ ‘CJ-series Special I/0 Units ‘ ‘CPMlA Expansion Units ‘
‘CS-series CPU Bus Units ‘ ‘ CJ-series CPU Bus Units ‘ ‘CJ-series Special I/0 Units (See note.)
CS-series Power Supply Units ‘CJ-SeriES Power Supply Units ‘ ‘CJ-series CPU Bus Units (See note.) ‘
Note: Products specifically for the CS1D
Series are required to use CS1D Note: Can be used with only a CP1H
\ CPU Units. \\ / k CPU Unit. /

XV

XVi

Precautions provides general precautions for using the Programmable Controller and related devices.
Section 1 describes the basic concepts required to program the CP1H.
Section 2 describes the operation of tasks and how to use tasks in programming.

Section 3 describes each of the instructions that can be used in programming CP-series PLCs.
Instructions are described in order of function.

Section 4 lists the execution times and number of steps for all instructions supported by the CP1H
PLCs, and describes the execution times for function block instances.

The Appendices provide lists of the programming instructions in order of function and in order of func-
tion number.

Related Manuals

The following manuals are used for the CP-series CPU Units. Refer to these manuals as required.

Cat. No. Model numbers Manual name Description
W451 CP1H-X40DLI-[1] SYSMAC CP Series | Provides the following information on the CP Series:
gEi:éégg?DDD SP%'; and CP1L CPU |, programming instructions
- - nit Programming . .
CP1L-L14D[-] Manual Programming methods
CP1L-L20DLI-] (This manual)) T?SKS
CP1L-M30DLI-[] * File memory
CP1L-M40D[-[] * Functions
Use this manual together with the CP Series CP1H
CPU Units Operation Manual (W450) and CP
Series CP1L CPU Units Operation Manual (W462)
W450 CP1H-X40DLI-[1] SYSMAC CP Series | Provide the following information on the CP Series:
CP1H-XA40DLI-] CP1H CPU Unit » Overview, design, installation, maintenance, and
CP1H-Y20DT-D Operation Manual other basic specifications
W462 CP1L-L14DCI-[] SYSMAC CP Series |« Features
CP1L-L20DCI-] CP1L CPU Unit Oper- |, System configuration
CP1L-M30D[I-[] ation Manual « Mount d wiri
CP1L-M40D[-[] ounting an wmng
*1/0 memory allocation
« Troubleshooting
Use this manual together with the CP1H Program-
mable Controllers Programming Manual (W451).
W461 CP1L-L14DUI-[] SYSMAC CP Series | Provides basic setup information for CP1L PLCs,
CP1L-L20D[-[] CP1L Introduction including the following.
CP1L-M30DLI-L] Manual « Basic configuration and part names
CP1L-M40D[I-] . iy
* Mounting and wiring procedures
* Programming, program transfer, and debugging
with the CX-Programmer
* Application programming examples using the
CP1L
W342 CS1G/H-CPULILH SYSMAC CS/CJ- Describes commands addressed to CS-series, and
CS1G/H-CPULIL-V1 series Communica- | CJ-series CPU Units, including C-mode commands
CS1D-CPULILIH tions Commands Ref- | and FINS commands.
ggi&vgzﬁg?s erence Manual Note This manual describes on commands
CSlW-SC821 V1/41-V1 address to CPU Units regardless of the com-
CJlG/;-l CPUD_DH) munications path. (CPU Unit serial ports,
CILG C;DUDDP Serial Communications Unit/Board ports, and
CPlH_CPUDD Communications Unit ports can be used.)
CI1G _CPUDD Refer to the relevant operation manuals for
CJlV\/- SCU21-V1/41-V1 information on commands addresses to Spe-
)) : cial I/O Units and CPU Bus Units.
W446 WS02-CXPC1-E-V70 SYSMAC CX-Pro- Provides information on installing and operating the
grammer CX-Programmer for all functions except for function
Ver. 7.0 Operation blocks.
Manual
W447 WS02-CXPC1-E-V70 SYSMAC CX-Pro- Provides specifications and operating procedures
grammer Ver. 7.0 for function blocks. Function blocks can be used
Operation Manual with CX-Programmer Ver. 6.1 or higher and either a
Function Blocks CS1-H/CJ1-H CPU Unit with a unit version of 3.0 or
a CP1H CPU Unit. Refer to W446 for operating pro-
cedures for functions other than function blocks.
w444 CXONE-ALLICIC-E CX-One FA Inte- Provides an overview of the CX-One FA Integrated
grated Tool Package | Tool and installation procedures.
Setup Manual

XVii

XViii

Cat. No.

Model numbers

Manual name

Description

W445

CXONE-ALLLIC-E

CX-Integrator Opera-
tion Manual

Describes CX-Integrator operating procedures and
provides information on network configuration (data
links, routing tables, Communications Units setup,
etc.

W344

WS02-PSTC1-E

CX-Protocol Opera-
tion Manual

Provides operating procedures for creating protocol
macros (i.e., communications sequences) with the
CX-Protocol and other information on protocol mac-
ros.

The CX-Protocol is required to create protocol mac-
ros for user-specific serial communications or to
customize the standard system protocols.

Read and Understand this Manual

Please read and understand this manual before using the product. Please consult your OMRON
representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a
period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-
INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE
PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS
DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR
INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES,
LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS,
WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT
LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which
liability is asserted.

IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS
REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS
WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO
CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

XiX

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the
combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying
ratings and limitations of use that apply to the products. This information by itself is not sufficient for a
complete determination of the suitability of the products in combination with the end product, machine,
system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not
intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses
listed may be suitable for the products:

« Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or
uses not described in this manual.

* Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical
equipment, amusement machines, vehicles, safety equipment, and installations subject to separate
industry or government regulations.

» Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.

NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR
PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO
ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED
FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS

OMRON shall not be responsible for the user's programming of a programmable product, or any
consequence thereof.

XX

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other
reasons.

It is our practice to change model numbers when published ratings or features are changed, or when
significant construction changes are made. However, some specifications of the products may be changed
without any notice. When in doubt, special model numbers may be assigned to fix or establish key
specifications for your application on your request. Please consult with your OMRON representative at any
time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when
tolerances are shown.

PERFORMANCE DATA

Performance data given in this manual is provided as a guide for the user in determining suitability and does
not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must
correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and
Limitations of Liability.

ERRORS AND OMISSIONS

The information in this manual has been carefully checked and is believed to be accurate; however, no
responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

XXi

XXii

PRECAUTIONS

This section provides general precautions for using the CP-series Programmable Controllers (PLCs) and related devices.

The information contained in this section is important for the safe and reliable application of Programmable
Controllers. You must read this section and understand the information contained before attempting to set up or
operatea PLC system.

1 Intended AUTIENCEttt XXiV
2 General PreCaltionso vvi vt XXiv
3 Safety Precautions.o XXiv
4 Operating Environment Precautions.t XXVi
5 Application PreCautionso XXVil
6 Conformanceto EC Directives.ot XXX
6-1 ApplicableDirectives. XXX
6-2 CONCE LS . . ettt XXX
6-3 Conformanceto EC Directives., XXX
6-4 Relay Output Noise Reduction Methods XXX

6-5 Conditions for Meeting EMC Directives when Using CP1,
CP-series, or CPM1A Relay Expansion 1/O Units. XXXii

XXiil

I ntended Audience

1

2

3

XXV

Intended Audience

This manual is intended for the following personnel, who must also have
knowledge of electrical systems (an electrical engineer or the equivalent).

» Personnel in charge of installing FA systems.
» Personnel in charge of designing FA systems.
* Personnel in charge of managing FA systems and facilities.

General Precautions

/\ WARNING

The user must operate the product according to the performance specifica-
tions described in the operation manuals.

Before using the product under conditions which are not described in the
manual or applying the product to nuclear control systems, railroad systems,
aviation systems, vehicles, combustion systems, medical equipment, amuse-
ment machines, safety equipment, and other systems, machines, and equip-
ment that may have a serious influence on lives and property if used
improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide
the systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the Unit. Be
sure to read this manual before attempting to use the Unit and keep this man-
ual close at hand for reference during operation.

It is extremely important that a PLC and all PLC Units be used for the speci-
fied purpose and under the specified conditions, especially in applications that
can directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PLC System to the above-mentioned appli-
cations.

Safety Precautions

/\ WARNING

/\ WARNING

/\ WARNING

/\ WARNING

Do not attempt to take any Unit apart while the power is being supplied. Doing
so may result in electric shock.

Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

Do not attempt to disassemble, repair, or modify any Units. Any attempt to do
so may result in malfunction, fire, or electric shock.

Provide safety measures in external circuits (i.e., not in the Programmable
Controller), including the following items, to ensure safety in the system if an
abnormality occurs due to malfunction of the PLC or another external factor
affecting the PLC operation. Not doing so may result in serious accidents.

» Emergency stop circuits, interlock circuits, limit circuits, and similar safety
measures must be provided in external control circuits.

Safety Precautions

3

/\ WARNING

& Caution

& Caution

& Caution

& Caution

& Caution

& Caution

» The PLC will turn OFF all outputs when its self-diagnosis function detects
any error or when a severe failure alarm (FALS) instruction is executed.
As a countermeasure for such errors, external safety measures must be
provided to ensure safety in the system.

» The PLC or outputs may remain ON or OFF due to deposits on or burning
of the output relays, or destruction of the output transistors. As a counter-
measure for such problems, external safety measures must be provided
to ensure safety in the system.

* When the 24-V DC output (service power supply to the PLC) is over-
loaded or short-circuited, the voltage may drop and result in the outputs
being turned OFF. As a countermeasure for such problems, external
safety measures must be provided to ensure safety in the system.

Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes. Not doing so may result in
serious accidents.

Execute online edit only after confirming that no adverse effects will be
caused by extending the cycle time. Otherwise, the input signals may not be
readable.

Confirm safety at the destination node before transferring a program to
another node or editing the 1/0 area. Doing either of these without confirming
safety may result in injury.

Tighten the screws on the terminal block of the AC Power Supply Unit to the
torque specified in this manual. The loose screws may result in burning or
malfunction.

Do not touch anywhere near the power supply parts or I/O terminals while the
power is ON, and immediately after turning OFF the power. The hot surface
may cause burn injury.

Pay careful attention to the polarities (+/-) when wiring the DC power supply. A
wrong connection may cause malfunction of the system.

When connecting the PLC to a computer or other peripheral device, either
ground the 0 V side of the external power supply or do not ground the external
power supply at all. Otherwise the external power supply may be shorted
depending on the connection methods of the peripheral device. DO NOT
ground the 24 V side of the external power supply, as shown in the following
diagram.

24V Non-insulated DC power supply
[Twisted-pair
cable
[EX . VA V) G S
FG ;
CPU Unit FG Peripheral device FG
7 2

XXV

Operating Environment Precautions 4

4

XXVi

& Caution

& Caution

After programming (or reprogramming) using the IOWR instruction, confirm
that correct operation is possible with the new ladder program and data before
starting actual operation. Any irregularities may cause the product to stop
operating, resulting in unexpected operation in machinery or equipment.

The CP-series CPU Units automatically back up the user program and param-
eter data to flash memory when these are written to the CPU Unit. I/O mem-
ory (including the DM Area, Counter present values and Completion Flags,
and HR Area), however, is not written to flash memory. The DM Area, Counter
present values and Completion Flags, and HR Area can be held during power
interruptions with a battery. If there is a battery error, the contents of these
areas may not be accurate after a power interruption. If the contents of the
DM Area, Counter present values and Completion Flags, and HR Area are
used to control external outputs, prevent inappropriate outputs from being
made whenever the Battery Error Flag (A402.04) is ON.

Operating Environment Precautions

& Caution

& Caution

& Caution

Do not operate the control system in the following locations:

« Locations subject to direct sunlight.

* Locations subject to temperatures or humidity outside the range specified
in the specifications.

« Locations subject to condensation as the result of severe changes in tem-
perature.

* Locations subject to corrosive or flammable gases.

* Locations subject to dust (especially iron dust) or salts.

* Locations subject to exposure to water, oil, or chemicals.
« Locations subject to shock or vibration.

Take appropriate and sufficient countermeasures when installing systems in
the following locations:

* Locations subject to static electricity or other forms of noise.
* Locations subject to strong electromagnetic fields.

« Locations subject to possible exposure to radioactivity.

« Locations close to power supplies.

The operating environment of the PLC System can have a large effect on the
longevity and reliability of the system. Improper operating environments can
lead to malfunction, failure, and other unforeseeable problems with the PLC
System. Make sure that the operating environment is within the specified con-
ditions at installation and remains within the specified conditions during the
life of the system.

Application Precautions 5

5 Application Precautions

Observe the following precautions when using the PLC System.

&WARNING Always heed these precautions. Failure to abide by the following precautions
could lead to serious or possibly fatal injury.

 Always connect to 100 Q or less when installing the Units. Not connecting
to a ground of 100 Q or less may result in electric shock.

 Always turn OFF the power supply to the PLC before attempting any of
the following. Not turning OFF the power supply may result in malfunction
or electric shock.

* Mounting or dismounting Expansion Units or any other Units

» Connecting or removing the Memory Cassette or Option Board
« Setting DIP switches or rotary switches

» Connecting or wiring the cables

» Connecting or disconnecting the connectors

&Caution Failure to abide by the following precautions could lead to faulty operation of
the PLC or the system, or could damage the PLC or PLC Units. Always heed
these precautions.

« Install external breakers and take other safety measures against short-cir-
cuiting in external wiring. Insufficient safety measures against short-cir-
cuiting may result in burning.

Mount the Unit only after checking the connectors and terminal blocks
completely.

Be sure that all the terminal screws and cable connector screws are tight-
ened to the torque specified in the relevant manuals. Incorrect tightening
torgue may result in malfunction.

Wire all connections correctly according to instructions in this manual.

Always use the power supply voltage specified in the operation manuals.
An incorrect voltage may result in malfunction or burning.

Take appropriate measures to ensure that the specified power with the
rated voltage and frequency is supplied. Be particularly careful in places
where the power supply is unstable. An incorrect power supply may result
in malfunction.

Leave the label attached to the Unit when wiring. Removing the label may
result in malfunction.

Remove the label after the completion of wiring to ensure proper heat dis-
sipation. Leaving the label attached may result in malfunction.

Use crimp terminals for wiring. Do not connect bare stranded wires
directly to terminals. Connection of bare stranded wires may result in
burning.

Do not apply voltages to the input terminals in excess of the rated input
voltage. Excess voltages may result in burning.

Do not apply voltages or connect loads to the output terminals in excess
of the maximum switching capacity. Excess voltage or loads may result in
burning.

XXVii

Application Precautions

5

XXViii

» Be sure that the terminal blocks, connectors, Option Boards, and other
items with locking devices are properly locked into place. Improper locking
may result in malfunction.

Disconnect the functional ground terminal when performing withstand
voltage tests. Not disconnecting the functional ground terminal may result
in burning.

Wire correctly and double-check all the wiring or the setting switches
before turning ON the power supply. Incorrect wiring may result in burn-
ing.

Check that the DIP switches and data memory (DM) are properly set
before starting operation.

Check the user program for proper execution before actually running it on
the Unit. Not checking the program may result in an unexpected opera-
tion.

Resume operation only after transferring to the new CPU Unit and/or Spe-
cial /0 Units the contents of the DM, HR, and CNT Areas required for
resuming operation. Not doing so may result in an unexpected operation.
Confirm that no adverse effect will occur in the system before attempting
any of the following. Not doing so may result in an unexpected operation.

» Changing the operating mode of the PLC (including the setting of the

startup operating mode).
* Force-setting/force-resetting any bit in memory.
» Changing the present value of any word or any set value in memory.

Do not pull on the cables or bend the cables beyond their natural limit.
Doing either of these may break the cables.

Do not place objects on top of the cables. Doing so may break the cables.

When replacing parts, be sure to confirm that the rating of a new part is
correct. Not doing so may result in malfunction or burning.

Before touching the Unit, be sure to first touch a grounded metallic object
in order to discharge any static buildup. Not doing so may result in mal-
function or damage.

Do not touch the Expansion 1/0O Unit Connecting Cable while the power is
being supplied in order to prevent malfunction due to static electricity.

Do not turn OFF the power supply to the Unit while data is being trans-
ferred.

When transporting or storing the product, cover the PCBs with electrically
conductive materials to prevent LSIs and ICs from being damaged by
static electricity, and also keep the product within the specified storage
temperature range.

Do not touch the mounted parts or the rear surface of PCBs because
PCBs have sharp edges such as electrical leads.

Double-check the pin numbers when assembling and wiring the connec-
tors.

Wire correctly according to specified procedures.

Do not connect pin 6 (+5V) on the RS-232C Option Board on the CPU
Unit to any external device other than the NT-ALOO1 or CJ1W-CIF11 Con-
version Adapter. The external device and the CPU Unit may be damaged.

Use the dedicated connecting cables specified in this manual to connect
the Units. Using commercially available RS-232C computer cables may
cause failures in external devices or the CPU Unit.

Application Precautions

5

» Check that data link tables and parameters are properly set before start-
ing operation. Not doing so may result in unexpected operation. Even if
the tables and parameters are properly set, confirm that no adverse
effects will occur in the system before running or stopping data links.

Transfer a routing table to the CPU Unit only after confirming that no
adverse effects will be caused by restarting CPU Bus Units, which is auto-
matically done to make the new tables effective.

The user program and parameter area data in the CP-series CPU Unit is
backed up in the built-in flash memory. The BKUP indicator will light on
the front of the CPU Unit when the backup operation is in progress. Do
not turn OFF the power supply to the CPU Unit when the BKUP indicator
is lit. The data will not be backed up if power is turned OFF.

Do not turn OFF the power supply to the PLC while the Memory Cassette
is being written. Doing so may corrupt the data in the Memory Cassette.
The BKUP indicator will light while the Memory Cassette is being written.
With a CP1H CPU Unit, the 7-segment display will also light to indicate
writing progress. Wait for the BKUP indicator and 7-segment display to go
out before turning OFF the power supply to the PLC.

Before replacing the battery, supply power to the CPU Unit for at least 5
minutes and then complete battery replacement within 5 minutes of turn
OFF the power supply. Memory data may be corrupted if this precaution is
not observed.

Always use the following size wire when connecting I/0O Units, Special /O
Units, and CPU Bus Units: AWG22 to AWG18 (0.32 to 0.82 mm?).

UL standards required that batteries be replaced only by experienced
technicians. Do not allow unqualified persons to replace batteries. Also,
always follow the replacement procedure provided in the manual.

Never short-circuit the positive and negative terminals of a battery or
charge, disassemble, heat, or incinerate the battery. Do not subject the
battery to strong shocks or deform the barry by applying pressure. Doing
any of these may result in leakage, rupture, heat generation, or ignition of
the battery. Dispose of any battery that has been dropped on the floor or
otherwise subjected to excessive shock. Batteries that have been sub-
jected to shock may leak if they are used.

Always construct external circuits so that the power to the PLC it turned
ON before the power to the control system is turned ON. If the PLC power
supply is turned ON after the control power supply, temporary errors may
result in control system signals because the output terminals on DC Out-
put Units and other Units will momentarily turn ON when power is turned
ON to the PLC.

Fail-safe measures must be taken by the customer to ensure safety in the
event that outputs from Output Units remain ON as a result of internal cir-
cuit failures, which can occur in relays, transistors, and other elements.

If the 1/0O Hold Bit is turned ON, the outputs from the PLC will not be
turned OFF and will maintain their previous status when the PLC is
switched from RUN or MONITOR mode to PROGRAM mode. Make sure
that the external loads will not produce dangerous conditions when this
occurs. (When operation stops for a fatal error, including those produced
with the FALS(007) instruction, all outputs from Output Unit will be turned
OFF and only the internal output status will be maintained.)

XXX

Conformance to EC Directives 6

6
6-1

6-2

6-3

XXX

* Dispose of the product and batteries according to local ordinances as
they apply.
Have qualified specialists properly dispose of used batteries as industrial
waste.

m
X B
D rmmEmEg,

Conformance to EC Directives

Applicable Directives

Concepts

Note

* EMC Directives
» Low Voltage Directive

EMC Directives

OMRON devices that comply with EC Directives also conform to the related
EMC standards so that they can be more easily built into other devices or the
overall machine. The actual products have been checked for conformity to
EMC standards (see the following note). Whether the products conform to the
standards in the system used by the customer, however, must be checked by
the customer.

EMC-related performance of the OMRON devices that comply with EC Direc-
tives will vary depending on the configuration, wiring, and other conditions of
the equipment or control panel on which the OMRON devices are installed.
The customer must, therefore, perform the final check to confirm that devices
and the overall machine conform to EMC standards.

The applicable EMC (Electromagnetic Compatibility) standard is EN61131-2.

Low Voltage Directive
Always ensure that devices operating at voltages of 50 to 1,000 V AC and 75
to 1,500 V DC meet the required safety standards for the PLC (EN61131-2).

Conformance to EC Directives

1,2,3...

The CP1H/CP1L PLCs comply with EC Directives. To ensure that the
machine or device in which the CP1H/CP1L PLC is used complies with EC
Directives, the PLC must be installed as follows:

1. The CP1H/CP1L PLC must be installed within a control panel.

2. You must use reinforced insulation or double insulation for the DC power
supplies used for I/O Units and CPU Units requiring DC power. The output
holding time must be 10 ms minimum for the DC power supply connected
to the power supply terminals on Units requiring DC power.

3. CP1H/CP1L PLCs complying with EC Directives also conform to
EN61131-2. Radiated emission characteristics (10-m regulations) may
vary depending on the configuration of the control panel used, other devic-
es connected to the control panel, wiring, and other conditions. You must
therefore confirm that the overall machine or equipment complies with EC
Directives.

Conformanceto EC Directives

6-4

Relay Output Noise Reduction Methods

The CP1H/CP1L PLCs conforms to the Common Emission Standards
(EN61131-2) of the EMC Directives. However, noise generated by relay out-
put switching may not satisfy these Standards. In such a case, a noise filter
must be connected to the load side or other appropriate countermeasures
must be provided external to the PLC.

Countermeasures taken to satisfy the standards vary depending on the
devices on the load side, wiring, configuration of machines, etc. Following are
examples of countermeasures for reducing the generated noise.

Countermeasures

Countermeasures are not required if the frequency of load switching for the
whole system with the PLC included is less than 5 times per minute.

Countermeasures are required if the frequency of load switching for the whole
system with the PLC included is more than 5 times per minute.

Note

Countermeasure Examples

Refer to EN61131-2 for more details.

When switching an inductive load, connect an surge protector, diodes, etc., in
parallel with the load or contact as shown below.

Circuit Current Characteristic Required element
AC DC
CR method Yes Yes If the load is a relay or solenoid, there is | The capacitance of the capacitor must
_ a time lag between the moment the cir- | be 1 to 0.5 uF per contact current of
- cuit is opened and the moment the load |1 A and resistance of the resistor must
: e is reset. be 0.5to 1 Q per contact voltage of 1 V.
@ B If the supply voltage is 24 or 48V, insert | These values, however, vary with the
) B the surge protector in parallel with the | l0ad and the characteristics of the

load. If the supply voltage is 100 to
200 V, insert the surge protector
between the contacts.

relay. Decide these values from experi-
ments, and take into consideration that
the capacitance suppresses spark dis-
charge when the contacts are sepa-
rated and the resistance limits the
current that flows into the load when
the circuit is closed again.

The dielectric strength of the capacitor
must be 200 to 300 V. If the circuit is an
AC circuit, use a capacitor with no
polarity.

XXXI

Conformance to EC Directives

Characteristic

Required element

The diode connected in parallel with
the load changes energy accumulated
by the coil into a current, which then
flows into the coil so that the current will
be converted into Joule heat by the
resistance of the inductive load.

This time lag, between the moment the
circuit is opened and the moment the
load is reset, caused by this method is
longer than that caused by the CR
method.

The reversed dielectric strength value
of the diode must be at least 10 times
as large as the circuit voltage value.
The forward current of the diode must
be the same as or larger than the load
current.

The reversed dielectric strength value
of the diode may be two to three times
larger than the supply voltage if the
surge protector is applied to electronic
circuits with low circuit voltages.

Circuit Current
AC DC
Diode m(ﬂod No Yes
Of
2
[T 53
Power k=ge}
supply
Yes Yes

Varistor method

Inductive
load

The varistor method prevents the impo-
sition of high voltage between the con-
tacts by using the constant voltage
characteristic of the varistor. There is
time lag between the moment the cir-
cuitis opened and the moment the load
is reset.

If the supply voltage is 24 or 48 V, insert
the varistor in parallel with the load. If
the supply voltage is 100 to 200 V,
insert the varistor between the con-
tacts.

When switching a load with a high inrush current such as an incandescent
lamp, suppress the inrush current as shown below.

6-5

Countermeasure 1

ouT .

COM

Providing a dark current of
approx. one-third of the rated
value through an incandescent
lamp

Countermeasure 2

R
ouT

+

COM

Providing a limiting resistor

Conditions for Meeting EMC Directives when Using CP1, CP-

series, or CPM1A Relay Expansion I/O Units

EN 61131-2 immunity testing conditions when using the CP1W-40EDR,
CPM1A-40EDR, CP1W-16ER or CPM1A-16ER with an CP1W-CN811 I/O
Connecting Cable are given below.

Recommended Ferrite Core

Ferrite Core (Data Line Filter): 0443-164151 manufactured by Nisshin Electric
Minimum impedance: 90 Q at 25 MHz, 160 Q at 100 MHz

TH e

XXXIi

‘47 32 —»‘ L— 33—

Conformanceto EC Directives 6

Recommended Connection Method

1,2,3... 1. Cable Connection Method

2. Connection Method
As shown below, connect a ferrite core to each end of the CP1W-CN811
I/0 Connecting Cable.

O

g
i1
o)

XXXiii

Conformance to EC Directives

XXXV

SECTION 1
Programming Concepts

This section describes the basic concepts required to program the CP1H.

1-1 Programming CONCEPLS.ottt e e 2
1-1-1 Programsand Tasksvvv v 2
1-1-2 Basic Informationon Instructions, 4
1-1-3 Instruction Location and Execution Conditions. 6
1-1-4 Addressing /OMeMOory Areas.oovvevi i 7
1-1-5 Specifying InstructionOperandscoovii... 8
1-1-6 DalaFormats.oo i e 13
1-1-7 InstructionVariations. 17
1-1-8 Execution Conditions.ttt 17
1-1-9 WO Instruction TiMiNgo vt 19
1-1-10 Refresh TimMiNg. . ..ot e 20
1-1-11 Program CapaCityo v et 22
1-1-12 Basic Ladder Programming Conceptscovvenn .. 22
1-1-13 Inputting MNemMOoNICSot 27
1-1-14 ProgramEXamplesS.t 28
1-2 Precautionsov it e 33
1-2-1 ConditionFlags. . ..o oo 33
1-2-2 Specia Program Sections.t 38
1-3 Checking Programs.ttt e e 41
1-3-1 CX-Programmert 41
1-3-2 Program Checks with the CX-Programmer 42
1-3-3 ProgramExecutionCheck it 43
1-3-4 Checking Fatal Errors. 45
1-4 Introducing Function BIOCKS.t 46
1-4-1 Oveviewand Features.t 46
1-4-2 Function Block Specifications, 47
1-4-3 FilesCreated with CX-Programmer., 48

Programming Concepts

Section 1-1

1-1
1-1-1

1,2,3...

Note

Programming Concepts

Programs and Tasks

Tasks specify the sequence and interrupt conditions under which individual
programs will be executed. They are broadly grouped into the following types:

1. Tasks executed sequentially that are called cyclic tasks.
2. Tasks executed by interrupt conditions that are called interrupt tasks.

Interrupt tasks can be executed cyclically in the same way as cyclic tasks.
These are called “extra cyclic tasks.”

Programs allocated to cyclic tasks will be executed sequentially by task num-
ber and I/O will be refreshed once per cycle after all tasks (more precisely
tasks that are in executable status) are executed. If an interrupt condition
goes into effect during processing of the cyclic tasks, the cyclic task will be
interrupted and the program allocated to the interrupt task will be executed.

Program A

Interrupt \/
task 100

Allocation

>
<}
e}
=4
=
=

Program B

lHEj
Program C

Allocation . |

@ Allocation T E—)q
I 1/0 refreshing I
S—

In the above example, programming would be executed in the following order:
start of A, B, remainder of A, C, and then D. This assumes that the interrupt
condition for interrupt task 100 was established during execution of program
A. When execution of program B is completed, the rest of program A would be
executed from the place where execution was interrupted.

With earlier OMRON PLCs, one continuous program is formed from several
continuous parts. The programs allocated to each task are single programs
that terminate with an END instruction, just like the single program in earlier
PLCs.

Program D

Programming Concepts

Section 1-1

Earlier system

One continuous l

subprogram

0

H 0 l

One feature of the cyclic tasks is that they can be enabled (executable status)
and disabled (standby status) by the task control instructions. This means that
several program components can be assembled as a task, and that only spe-
cific programs (tasks) can then be executed as needed for the current product
model or process being performed (program step switching). Therefore perfor-
mance (cycle time) is greatly improved because only required programs will
be executed as needed.

CP1H

Task 1

.

Allocation

/Tasks can be put into non-

7. executing (standby) status.

Task 3
A B
| 1/0 refreshing l il
1 | 1/0 refreshing |
I
A task that has been executed will be executed in subsequent cycles, and a
task that is on standby will remain on standby in subsequent cycles unless it is
executed again from another task.
Note Unlike earlier programs that can be compared to reading a scroll, tasks can

be compared to reading through a series of individual cards.

* All cards are read in a preset sequence starting from the lowest number.

* All cards are designated as either active or inactive, and cards that are
inactive will be skipped. (Cards are activated or deactivated by task con-
trol instructions.)

* A card that is activated will remain activated and will be read in subse-
guent sequences. A card that is deactivated will remain deactivated and
will be skipped until it is reactivated by another card.

Programming Concepts Section 1-1

Earlier program: CP-series program:
Like a scroll Like a series of cards that can be activated
or deactivated by other cards.

Activated | Deactivated

1-1-2 Basic Information on Instructions

Programs consist of instructions. The conceptual structure of the inputs to and
outputs from an instruction is shown in the following diagram.

*.
. " : L R
Power flow (P.F., execution condition) ——— ——— Power flow (P.F., execution condition)
Instruction condition ———p Instruction Ly |nstruction condition™
Flags ——», ——— Flag
T l *1: Input instructions only.
Operands Operands *2: Not output for all instructions.

(sources) (destinations)

I y

Memory

Power Flow The power flow is the execution condition that is used to control the execute
and instructions when programs are executing normally. In a ladder program,
power flow represents the status of the execution condition.

Input Instructions

» Load instructions indicate a logical start and outputs the execution condi-
tion.

Outputs the
/ execution condition.

* Intermediate instructions input the power flow as an execution condition
and output the power flow to an intermediate or output instruction.

Outputs the
/ execution condition.
DO
#1215

Programming Concepts

Section 1-1

Instruction Conditions

Output Instructions

Output instructions execute all functions, using the power flow as an execution
condition.

J_ LD power flow

| ~ VRN /
Input block Output block

Power flow for
output instruction

Instruction conditions are special conditions related to overall instruction exe-
cution that are output by the following instructions. Instruction conditions have
a higher priority than power flow (P.F.) when it comes to deciding whether or
not to execute an instruction. An instruction may become not be executed or
may act differently depending on instruction conditions. Instruction conditions
are reset (canceled) at the start of each task, i.e., they are reset when the task
changes.

The following instructions are used in pairs to set and cancel certain instruc-
tion conditions. These paired instructions must be in the same task.

Instruction Description Setting Canceling
condition instruction instruction
Interlocked An interlock turns OFF part of the program. Special conditions, such as | IL(002) ILC(003)
turning OFF output bits, resetting timers, and holding counters are in
effect.
BREAK(514) |Ends a FOR(512) - NEXT(513) loop during execution. (Prevents execu- | BREAK(514) | NEXT(513)
execution tion of all instructions until to the NEXT(513) instruction.)
Executes a JIMPO(515) to JMEO(516) jump. JMPO(515) JMEO0(516)
Block program | Executes a program block from BPRG(096) to BEND(801). BPRG(096) BEND(801)
execution
Flags In this context, a flag is a bit that serves as an interface between instructions.
Input flags Output flags
« Differentiation Flags « Differentiation Flags

Differentiation result flags. The status of these flags
are input automatically to the instruction for all dif-
ferentiated up/down output instructions and the
DIFU(013)/DIFD(014) instructions. .
 Carry (CY) Flag
The Carry Flag is used as an unspecified operand
in data shift instructions and addition/subtraction
instructions.
« Flags for Special Instructions .
These include teaching flags for FPD(269) instruc-
tions and network communications enabled flags

Differentiation result flags. The status of these flags are output
automatically from the instruction for all differentiated up/down
output instructions and the UP(521)/DOWN(522) instruction.

Condition Flags

Condition Flags include the Always ON/OFF Flags, as well as
flags that are updated by results of instruction execution. In user
programs, these flags can be specified by labels, such as ER, CY,
>, =, Al, AO, rather than by addresses.

Flags for Special Instructions
These include MSG(046) execution completed flags.

Operands

Operands specify preset instruction parameters (boxes in ladder diagrams)
that are used to specify /O memory area contents or constants. An instruction
can be executed entering an address or constant as the operands. Operands
are classified as source, destination, or number operands.

Example
— MOV — JMP
#0 S (source) &3 ‘— N (humber)
DO D (destination)

Programming Concepts Section 1-1

Operand types Operand Description
symbol
Source Specifies the address of the data | S Source Oper- | Source operand other than control
to be read or a constant. and data (C)

C Control data | Compound data in a source oper-
and that has different meanings
depending bit status.

Destination Specifies the address where data | D (R)
(Results) will be written.
Number Specifies a particular number used | N
in the instruction, such as a jump
number or subroutine number.
Note Operands are also called the first operand, second operand, and so on, start-
ing from the top of the instruction.
— MOV
#0 First operand
DO Second operand
1-1-3 Instruction Location and Execution Conditions

The following table shows the possible locations for instructions. Instructions
are grouped into those that do and those do not require execution conditions.

Execution
condition

Instruction type Possible location Diagram Examples

Input instructions

Logical start (Load
instructions)

Connected directly
to the left bus bar

or is at the begin-

ning of an instruc-
tion block.

Not required.

LD, LD TST(350),
LD > (and other
symbol compari-
son instructions)

Intermediate
instructions

Between a logical
start and the out-
put instruction.

Required.

HE

AND, OR, AND
TEST(350), AND
> (and other ADD
symbol compari-
son instructions),
UP(521),
DOWN(522),
NOT(520), etc.

Output instructions

Connected directly
to the right bus
bar.

Required.

Most instructions
including OUT and
MOV(021).

Not required.

END(001),
JME(005),
FOR(512),
ILC(003), etc.

Note

(1) There is another group of instruction that executes a series of mnemonic

instructions based on a single input. These are called block programming
instructions. Refer to the CP-series CP1H/CP1L CPU Unit Programming
Manual for details on these block programs.
(2) If an instruction requiring an execution condition is connected directly to
the left bus bar without a logical start instruction, a program error will oc-

cur when checking the program on a CX-Programmer.

Programming Concepts

Section 1-1

1-1-4 Addressing I/O Memory Areas

Bit Addresses

0000.00

I Bit number (00 to 15)

— Word address
(Leading zeros are omitted.)

Example: The address of bit 03 in word 0001 in the CIO Area would be as
shown below. This address is given as “CIO 1.03” in this manual.

1.03

Bit number (03)
Word address: CIO 1

Bit address:
Wfrd CIO 1.03 (CIO 1.03)
15 14 13 12 11 10 09 08 07 06 05 04 (03 02 01 00 =<— Bitnumber

Clo0
Clo1
Clo 2

Example: Bit 08 in word HO10 in the HR Area is given as shown below.

‘H10.08

L Bit number: 08
— Word address: H10
Word Addresses

oooo

— Word address
(Leading zeros are omitted.)

Example: The address of word 0010 (bits 00 to 15) in the CIO Area is given
as shown below. This address is given as “CIO 10" in this manual.

10

Word address

Programming Concepts Section 1-1

Example: The address of word W5 (bits 00 to 15) in the Work Area is given
as shown below.

W5

Word address

Example: The address of word D200 (bits 00 to 15) in the DM Area is given
as shown below.

D200

— Word address

1-1-5 Specifying Instruction Operands

Operand Description Notation Application
examples
Specifying bit | The word and bit numbers are specified 1.02 1.02
addresses directly to specify a bit (input bits). I _| —
HHHHDHL Bit number: 02
Bit number Word number: CIO 1
(00 to 15)
Word address
Note The same addresses are used to
access timer/counter Completion Flags
and Present Values. There is also only
one address for a Task Flag.
Specifying The word number is specified directly to spec- | 5 —
word ify the 16-bit word. T MOv(021)
addresses 000 Word number: 3 3
D200
—li Word address D—ZOOL
Word number: D200
Specifying The offset from the beginning of the area is D300 —
indirect DM specified. The contents of the address will be Mov(021)
addresses in | treated as binary data (00000 to 32767) to Contents #1
Binary Mode | specify the word address in Data Memory Hexadecimal 256 @D300

(DM). Add the @ symbol at the front to specify
an indirect ad-dress in Binary Mode. Specifies D256.

Add the @ symbol.
@D
o

Contents |:| 00000 to 32767

(0000 to 7FFF hex)

D

Programming Concepts

Section 1-1

Operand Description Notation Application
examples
Specifying The offset from the beginning of the area is *D200 —
indirect DM specified. The contents of the address will be MOv(©21)
addresses in | treated as BCD data (0000 to 9999) to specify 01001 Contents #1
BCD Mode the word address in Data Memory (DM). Add *D200
an asterisk (*) at the front to specify an indirect '
address in BCD Mode. Specifies D100.
*DO0000 o
-1 Add an asterisk (*).
00000 to 9999
tooss
0
Specifyinga | Anindex register (IR) or a data register (DR) is | IRO —{MOVR(60)
register specified directly by specifying IR[] ([1: 0 to
directly 15) or DRI ((I: O to 15). 1.02
IRO
Stores the PLC
memory
address for
CIO 10in IRO.
IR1 —MOVR(560)
10
IR1
Stores the PLC
memory
address for
CIO 10in IR1.
Operand Description Notation Application examples
Specifying Indirect The bit or word with the PLC memory ,IRO IRO
an indirect | address address contained in IRL] will be speci- _| [
address (No offset) |fied.
using a reg- Specify ,IR[C] to specify bits and words Loads the bit with the PLC memory
Ister for instruction operands. address in IRO.
JIR1 —{MOV(021)
#1
JIR1
Stores #0001 in the word with the PLC
memory in IR1.
Constant | The bit or word with the PLC memory +5,IR0 +5 IR0
offset address in IR[] + or — the constant is _| —
specified.
Specify +/— constant ,IR[]. Constant off- Loads the bit with the PLC memory
sets range from —2048 to +2047 (deci- address in IRO + 5.
mal). The offset is converted to binary]
data when the instruction is executed. | *3LIR1 MOV(021)
#1
+31,IR1

Stores #0001 in the word with the PLC
memory address in IR1 + 31

Programming Concepts

Section 1-1

Operand Description Notation Application examples
Specifying DR offset | The bit or word with the PLC memory DRO IR0 | pro.IRO
an indirect address in IR[] + the contents of DR is — |—
address specified.
using areg- Specify DR ,IR(]. DR (data register) Loads the bit with the PLC memory
Ister contents are treated as signed-binary address in IR0 + the value in DRO.
data. The contents of IRL] will be given a L
negative offset if the signed binary value |PRO.IR1 MOV(021)
is negative. #1
DRO,IR1
Stores #0001 in the word with the PLC
memory address in IR1 + the value in
DRO.
Auto Incre- | The contents of IR[] is incremented by |,IRO ++ IRO ++
ment +1 or +2 after referencing the value as ’_| —
an PLC memory address.
+1: Specify ,IRL1+ Increments the contents of IR0 by 2
+2: Specify ,IRL] + + after the bit with the PLC memory
Note The auto increment operation will address in IR0 is loaded.
not be executed for a CP1L CPU | |Rpq + —Mov(021)
Unitifa P_ER or P_AER error
occurs during instruction execu- #1
tion. JIR1 +
Increments the contents of IR1 by 1
after #0001 is stored in the word with
the PLC memory address in IR1.
Auto Dec- | The contents of IRL] is decremented by |,—-IRO IR
rement —1 or -2 after referencing the value as —| —
an PLC memory address.
—1: Specify ,—IR[] After decrementing the contents of IRO
—2: Specify ,— —IRL[] IR1 by 2, the bit with the PLC memory

Note The auto decrement operation will
not be executed for a CP1L CPU
Unitif a P_ER or P_AER error
occurs during instruction execu-
tion.

address in IR0 is loaded.

—Mov(021)
#1
—IR1

After decrementing the contents of IR1
by 1, #0001 is stored in the word with
the PLC memory address in IR1.

10

Programming Concepts

Section 1-1

Data

Operand

Data form

Symbol

Range

Application example

16-bit con-
stant

All binary data or
a limited range of
binary data

Unsigned binary

#0000 to #FFFF

MOV(021)

#5A

D100

Signed decimal

I+

-32768 to
+32767

+(400)

D200

-128

D300

Unsigned deci-
mal

&0 to &65535

CMP(020)

D400

&999

All BCD data or a
limited range of
BCD data

BCD

#0000 to #9999

~B(414)

D500

#2000

D600

32-bit con-
stant

All binary data or
a limited range of
binary data

Unsigned binary

#00000000 to
#FFFFFFFF

MOVL(498)

#17FFF

D100

Signed binary

—2147483648 to
+2147483647

+L(401)

D200

—65536

D300

Unsigned deci-
mal

& (See Note.)

&0 to
&429467295

CMPL(060)

D400

&99999

AllBCD data or a
limited range of
BCD data

BCD

#00000000 to
#99999999

—BL(415)

D500

#1000000

D600

11

Programming Concepts Section 1-1

Data Operand | Data form Symbol Range Application example
Text string Description Symbol Examples
Text string data is stored in ASCII ' ']
(one byte except for special charac- | 'ABCDE MOVS(ss4)
ters) in order from the leftmost to the T D100
rightmost byte and from the right- = =Y D200
C D
most (smallest) to the leftmost word. B NUL
00 hex (NUL code) is stored in the " D100 41 42
rightmost byte of the last word if a1) D101 43 44
there is an odd number of charac- 23 24 D102 45 00
ters. 25 00 |

0000 hex (2 NUL codes) is stored in
the leftmost and rightmost vacant
bytes of the last word + 1 if there is
an even number of characters.

D200 41 42
'ABCD' D201 43 44
D202 45 00

N B

i D

NUL| NUL
1

41 42

43 44

00 00

ASCII characters that can be used in a text string includes alphanumeric characters, Katakana and sym-
bols (except for special characters). The characters are shown in the following table.

ASCII Characters

Bits 0 to 3 Bits4to 7
Binary 0000 ({0001 | 0010 {0011 |{0100{0101|0110|0111|1000{1001|1010(1011 (1100|1101 |1120|1112
Hex 0 1 2 5 6 7 8 9 A B

Space |1 |@ (F | = | |

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

nimlolo|lm|>|o|lo|v|oja|s|w[Nv|k|o

12

Programming Concepts

Section 1-1

1-1-6 Data Formats

The following table shows the data formats that the CP Series can handle.

Data type Data format Decimal 4-digit
hexadecimal
Unsigned 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o |Oto 0000 to FFFF
o N
Binary \ 215 214 213 212‘ 211 210 29 28‘ 27 26 25 24‘ 23 22 21 20
Decimal ‘3276816384 81924092 '2048 1024 512 256 '128 64 12 16 ' 8 4 2 1
Hex ;23 22 21 20 23 22 9l 093 22 ol 20 23 22 ol 20
Signed 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o |Oto Negative:
binary —-32768 8000 to FFFF
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Oto Positive: 0000
Binary 215 214 913 912, 911910 29 98,97 96 95 24, 23 92 ol o0 |+32767 to 7FFF
Decimal :3276816384 81924092:2048 1024 512 256 :128 64 12 16 8 4 2 1
Hex :23 22 21 20: 23 22 21 20:23 22 21 20 23 22 21 20
L Sign bit: 0: Positive, 1: Negative
BCD 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o |0t09999 10000 to 9999
(binary
cotled dec- HEEREEEREEEEEEN
|ma|) Binary . 23 22 21 20 . 23 22 21 20‘ 23 22 21 20 . 23 22 21 20
h. o A AN _/
Decimal
O0to9 O0to9 O0to9 Oto9

13

Programming Concepts Section 1-1

Data type Data format Decimal 4-digit
hexadecimal
Single-pre- 31 30 29 23 22 21 20 19 18 17 3 2 1 0
cision
foatng- | ||| || RN
point deci- (-
mal Sign of Exponent) Mantissa
mantissa Binary

L\

Value = (-1)Sign x 1.[Mantissa] x 2Exponent

Sign (bit 31) 1: negative or 0: positive

Mantissa The 23 bits from bit 00 to bit 22 contain the mantissa,
i.e., the portion below the decimal pointin 1.L1CI.....,
in binary.

Exponent The 8 bits from bit 23 to bit 30 contain the exponent.
The exponent is expressed in binary as 127 plus n in
2",

Note This format conforms to IEEE754 standards for single-precision floating-
point data and is used only with instructions that convert or calculate float-
ing-point data. It can be used to set or monitor from the I/O memory Edit
and Monitor Screen on the CX-Programmer. As such, users do not need to
know this format although they do need to know that the formatting takes
up two words.

Double- 63 62 61 52 51 50 49 48 47 46 3 2 1 0
precision
foatng- HEl R EEEN
point deci- S
mal Sign of Exponent) Mantissa
mantissa Binary
—

Value = (19" x 1.[Mantissa] x 2Exponent

Sign (bit 63) 1: negative or O: positive

Mantissa The 52 bits from bit 00 to bit 51 contain the mantissa,
i.e., the portion below the decimal point in 1.L1CIC].....,
in binary.

Exponent The 11 bits from bit 52 to bit 62 contain the exponent

The exponent is expressed in binary as 1023 plus n
in 2".

Note This format conforms to IEEE754 standards for double-precision floating-
point data and is used only with instructions that convert or calculate float-
ing-point data. It can be used to set or monitor from the I/O memory Edit
and Monitor Screen on the CX-Programmer. As such, users do not need to
know this format although they do need to know that the formatting takes
up four words.

Signed Binary Data

In signed binary data, the leftmost bit indicates the sign of binary 16-bit data.
The value is expressed in 4-digit hexadecimal.

Positive Numbers: A value is positive or O if the leftmost bit is O (OFF). In 4-
digit hexadecimal, this is expressed as 0000 to 7FFF hex.

Negative Numbers: A value is negative if the leftmost bit is 1 (ON). In 4-digit
hexadecimal, this is expressed as 8000 to FFFF hex. The absolute of the neg-
ative value (decimal) is expressed as a two's complement.

14

Programming Concepts

Section 1-1

Example: To treat —19 in decimal as signed binary, 0013 hex (the absolute
value of 19) is subtracted from FFFF hex and then 0001 hex is added to yield
FFED hex.

F F F F
1111 1111 1111 1111
True number 0 0 1 3
9 0000 0000 0001 0011
F F E C
1111 1111 1110 1100
0 0 0 1
+) 0000 0000 0000 0001
Two's complement E E E D
1111 1111 1110 1101

Complements

Generally the complement of base x refers to a number produced when all
digits of a given number are subtracted from x — 1 and then 1 is added to the
rightmost digit. (Example: The ten’s complement of 7556 is 9999 — 7556 + 1 =
2444.) A complement is used to express a subtraction and other functions as
an addition.

Example: With 8954 — 7556 = 1398, 8954 + (the ten’s complement of 7556) =
8954 + 2444 = 11398. If we ignore the leftmost bit, we get a subtraction result
of 1398.

Two’s Complements

A two’s complement is a base-two complement. Here, we subtract all digits
from 1 (2 -1 =1) and add one.

Example: The two’s complement of binary number 1101 is 1111 (F hex) —
1101 (D hex) + 1 (1 hex) = 0011 (3 hex). The following shows this value
expressed in 4-digit hexadecimal.

The two's complement b hex of a hex is FFFF hex — a hex + 0001 hex = b hex.
To determine the two’s complement b hex of “a hex,” use b hex = 10000 hex —
a hex.

Example: to determine the two’s complement of 3039 hex, use 10000 hex —
3039 hex = CFC7 hex.

Similarly use a hex = 10000 hex — b hex to determine the value a hex from the
two's complement b hex.

Example: To determine the real value from the two’s complement CFC7 hex
use 10000 hex — CFC7 hex = 3039 hex.

The CP Series has two instructions: NEG(160)(2'S COMPLEMENT) and
NEGL(161) (DOUBLE 2'S COMPLEMENT) that can be used to determine the
two's complement from the true number or to determine the true number from
the two’s complement.

15

Programming Concepts

Section 1-1

16

Signed BCD Data

Signed BCD data is a special data format that is used to express negative
numbers in BCD. Although this format is found in applications, it is not strictly
defined and depends on the specific application. The CP Series supports the
following instructions to convert the data formats: SIGNED BCD-TO-BINARY:
BINS(470), DOUBLE SIGNED BCD-TO-BINARY: BISL(472), SIGNED
BINARY-TO-BCD: BCDS(471), and DOUBLE SIGNED BINARY-TO-BCD:
BDSL(473). Refer to the CP-series CPU Unit Programming Manual (W451)
for more information.

Decimal Hexadecimal Binary BCD
0 0 0000 0000
1 1 0001 0001
2 2 0010 0010
3 3 0011 0011
4 4 0100 0100
5 5 0101 0101
6 6 0110 0110
7 7 0111 0111
8 8 1000 1000
9 9 1001 1001
10 A 1010 0001 0000
11 B 1011 0001 0001
12 C 1100 0001 0010
13 D 1101 0001 0011
14 E 1110 0001 0100
15 F 1111 0001 o101
16 10 10000 0001 0110
Decimal Unsigned binary (4-digit | Signed binary (4-digit
hexadecimal) hexadecimal)
+65,535 FFFF Cannot be expressed.
+65534 FFFE
+32,769 8001
+32,768 8000
+32,767 TFFF TFFF
+32,766 7FFE 7FFE
+2 0002 0002
+1 0001 0001
0 0000 0000
-1 Cannot be expressed. FFFF
-2 FFFE
-32,767 8001
-32,768 8000

Programming Concepts Section 1-1

1-1-7 Instruction Variations

The following variations are available for instructions to differentiate executing
conditions and to refresh data when the instruction is executed (immediate

refresh).
Variation Symbol Description
Differentiation ON |@ Instruction that differentiates when the execu-
tion condition turns ON.
OFF | % Instruction that differentiates when the execu-
tion condition turns OFF.

Refreshes data in the 1/0O area specified by
the operands or the Special I/0O Unit words
when the instruction is executed.

Immediate refreshing !

! @ MOV
! —I_— Instruction (mnemonic)
Differentiation variation

Immediate refresh variation

1-1-8 Execution Conditions
The CP Series offers the following types of basic and special instructions.
» Non-differentiated instructions executed every cycle
« Differentiated instructions executed only once

Non-differentiated Output instructions that required execution conditions are executed once
Instructions every cycle while the execution condition is valid (ON or OFF).

Example
| Non-differentiated ‘ | | !
output instruction

Input instructions that create logical starts and intermediate instructions read
bit status, make comparisons, test bits, or perform other types of processing
every cycle. If the results are ON, power flow is output (i.e., the execution con-

dition is turned ON).

Example

| Non-differentiated input instruction
] 1 I I |
| 11

Input-differentiated Instructions

Upwardly Differentiated » Output Instructions: The instruction is executed only during the cycle in
Instructions (Instruction which the execution condition turned ON (OFF — ON) and are not exe-
Preceded by @) cuted in the following cycles.

Example

1.02
(@) Upwardly-differ
‘_{ |7 entiated instruction ~_’ |—| @MOoV
Executes the MOV instruction once when
CIO 1.02 goes OFF — ON.

17

Programming Concepts Section 1-1

* Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output an ON execution
condition (power flow) when results switch from OFF to ON. The execu-
tion condition will turn OFF the next cycle.

Example
Upwardly differentiated input instruction 1.03

1l t—

ON execution condition created for one
cycle only when CIO 1.03 goes from
OFF to ON.

* Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output an OFF execution
condition (power flow stops) when results switch from OFF to ON. The
execution condition will turn ON the next cycle.

Example
| Upwardly differentiated input instruction 1.03
f
| [
OFF execution condition created for one
cycle only when CIO 1.03 goes from
OFF to ON.
Downwardly Differentiated » Output instructions: The instruction is executed only during the cycle in
Instructions (Instruction which the execution condition turned OFF (ON — OFF) and is not exe-

preceded by %) cuted in the following cycles.

Example
1.02
' (%) Downwardly dif- I [
ferentiated instruction YSET]
Executes the SET instruction once
when CIO 1.02 goes ON to OFF.

* Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output the execution condi-
tion (power flow) when results switch from ON to OFF. The execution con-
dition will turn OFF the next cycle.

]]]] Example
| Downwardly differentiated instruction 1.03

— —

Will turn ON when the CIO 1.03 switches
from ON to OFF and will turn OFF after
one cycle.

Note Unlike the upwardly differentiated instructions, downward differen-
tiation variation (%) can only be added to LD, AND, OR, SET and
RSET instructions. To execute downward differentiation with other
instructions, combine the instructions with a DIFD or a DOWN in-
struction.

18

Programming Concepts Section 1-1

* Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output an OFF execution
condition (power flow stops) when results switch from ON to OFF. The
execution condition will turn ON the next cycle.

Example
Downwardly differentiated input instruction 1.03

OFF execution condition created for one
cycle only when CIO 1.03 goes from ON
to OFF.

1-1-9 1/O Instruction Timing

The following timing chart shows different operating timing for individual
instructions using a program comprised of only LD and OUT instructions.

A |
A Bl 1
{ | O s |
A B2 !
1t 0 #
A B3
83
n o) :
A B4 '
84 !
!) ;
A B5S i
|t o &
A B6
i o & 3
A B7 '
87
{ | 0
A B8
i1} o
A B9
{4t o ®
A B10
810
{1 0)
A B11
811
[t 0)
A B12
14— 0 B
CPU pro-E 1 i .
cessing T t —
Instruction /O refresh
executed.
Differentiated Instructions « A differentiated instruction has an internal flag that tells whether the previ-

ous value is ON or OFF. At the start of operation, the previous value flags
for upwardly differentiated instruction (DIFU and @ instructions) are set to
ON and the previous value flags for downwardly differentiated instructions
(DIFD and % instructions) are set to OFF. This prevents differentiation
outputs from being output unexpectedly at the start of operation.

19

Programming Concepts Section 1-1

» An upwardly differentiated instruction (DIFU or @ instruction) will output
ON only when the execution condition is ON and flag for the previous
value is OFF

» Use in Interlocks (IL - ILC Instructions)
In the following example, the previous value flag for the differentiated
instruction maintains the previous interlocked value and will not output a
differentiated output at point A because the value will not be updated
while the interlock is in effect.

0.00
]
0.01
| DIFU
10.00
ILC
ILis ILis
0.00 executing executing
oor | N |
10.00 |_| ! |_|

®
* Use in Jumps (JMP - JME Instructions): Just as for interlocks, the pre-
vious value flag for a differentiated instruction is not changed when the
instruction is jumped, i.e., the previous value is maintained. Upwardly and
downwardly differentiate instructions will output the execution condition
only when the input status has changed from the status indicated by the
previous value flag.

Note (a) Do not use the Always ON Flag or A200.11 (First Cycle Flag) as
the input bit for an upwardly differentiated instruction. The instruc-
tion will never be executed.

(b) Do not use Always OFF Flag as the input bit for a downwardly dif-
ferentiated instruction. The instruction will never be executed.

1-1-10 Refresh Timing

The following methods are used to refresh external 1/O.
* Cyclic refresh
» Immediate refresh (! specified instruction, IORF instruction)

Cyclic Refresh Every program allocated to a ready cyclic task or a task where interrupt condi-
tion has been met will execute starting from the beginning program address
and will run until the END(001) instruction. After all ready cyclic tasks or tasks
where interrupt condition have been met have executed, cyclic refresh will
refresh all I/O points at the same time.

Note Programs can be executed in multiple tasks. I/O will be refreshed after the
final END(001) instruction in the program allocated to the highest number
(among all ready cyclic tasks) and will not be refreshed after the END(001)
instruction in programs allocated to other cyclic tasks.

20

Programming Concepts Section 1-1
. -
Top
f 15 0
LD 101 cor] o s
15 0
1 OUT 2.09 co2 []
s
Top 15 0
i cos [
15 0 16-bit units
END
Cyclic refresh
(batch processing) | | | |
I/O refresh — All real data

Immediate Refresh

Instructions with Refresh
Variation (1)

Note

Units Refreshed for
IORF(097)

Note

Execute IORF(097) for all required words or use instructions with the immedi-
ate refresh option prior to the END(001) instruction if I/O refreshing is required
in other tasks.

I/0 will be refreshed as shown below when an instruction is executing if an
real I/O bit in the built-in 1/0 of the CPU Unit is specified as an operand.
» When a bit operand is specified for an instruction, 1/0O will be refreshed for
the 16 bits of the word containing the bit.
* When a word operand is specified for an instruction, 1/0 will be refreshed
for the 16 bits that are specified.
* Inputs will be refreshed for input or source operand just before an instruc-
tion is executed.
 Outputs will be refreshed for outputs or destination (D) operands just after
an instruction is execute.

Add an exclamation mark (!) (immediate refresh option) in front of the instruc-
tion.

Immediate refreshing is not supported for real 1/0 data allocated to CP-
series/CPM1A Expansion Units or Expansion I/O Units, but IORF(097) is sup-
ported for them.

An I/O REFRESH instruction (IORF(097)) that refreshes real 1/0 data in a
specified word range is available as a special instruction for CP-
series/CPM1A Expansion Units and Expansion 1/O Units. All or just a speci-
fied range of real 1/0O bits can be refreshed during a cycle with this instruction.

IORF(097) cannot be used for real 1/0O bits allocated to the built-in 1/O of the
CPU Unit. Use instructions with the immediate refresh option for this I/O.

IORF(097) can also be used to refresh words allocated to CJ-series Special
I/0O Units.

21

Programming Concepts

Section 1-1

DLNK(226)

(CP1H CPU Units)

The CPU BUS UNIT I/O REFRESH instruction (DLNK(226)) can be used to
refresh memory allocated to CJ-series CPU Bus Units in the CIO and DM
Areas, as well as data link data and other data specific to the CPU Bus Units.
The unit number of the CPU Bus Unit is specified when DLNK(226) is exe-
cuted to refresh all of the following data at the same time.

» Words allocated to the Unitin CIO Area
* Words allocated to the Unitin DM Area

* Special refreshing for the Unit (e.g., data links for Controller Link Units or
remote 1/O for DeviceNet Units)

1-1-11 Program Capacity

Note

The maximum program capacities of the CP-series CPU Units for all user pro-
grams (i.e., the total capacity of all tasks) are given in the following table. All
capacities are given as the maximum number of steps. The capacities must
not be exceeded, and writing the program will be disabled if an attempt is
made to exceed the capacity.

Each instruction is from 1 to 7 steps long. Refer to SECTION 4 Instruction
Execution Times and Number of Steps for the specific number of steps in
each instruction. (The length of each instruction will increase by 1 step if a
double-length operand is used.)

Series CPU Unit type Model Max. program capacity
CP Series CP1H | XA CP1H-XA40D-[] 20K steps
CPU Units X CP1H-X40DC-J
Y CP1H-Y20DT-D
CP Series CP1L |M CP1L-M40D[-[] 10K steps
CPU Units CP1L-M30DC-0]
L CP1L-L20D0I- 5K steps
CP1L-L14D([-[]

Memory capacity for CP-series PLCs is measured in steps, whereas memory
capacity for previous OMRON PLCs, such as the C200HX/HG/HE and CV-
series PLCs, was measured in words. Refer to the information at the end of
SECTION 4 Instruction Execution Times and Number of Steps for guidelines
on converting program capacities from previous OMRON PLCs.

1-1-12 Basic Ladder Programming Concepts

General Structure of the

Ladder Diagram

22

Instructions are executed in the order listed in memory (mnemonic order). The
basic programming concepts as well as the execution order must be correct.

A ladder diagram consists of left and right bus bars, connecting lines, input
bits, output bits, and special instructions. A program consists of one or more
program runs. A program rung is a unit that can be partitioned when the bus is
split horizontally. In mnemonic form, a rung is all instructions from a LD/LD
NOT instruction to the output instruction just before the next LD/LD NOT
instructions. A program rung consists of instruction blocks that begin with an
LD/LD NOT instruction indicating a logical start.

Programming Concepts Section 1-1

Input bit Special Qutput bit
Left bus bar -/ Connecting IineInStruCtlon -[Right bus bar
~ \ rgl
1 ; \ O'__ 4— Rungs Instruction blocks
LI |
\
hY
' g — i -
— I—1 u A=
— |—H— L O— - I —QO—
— I— A HO—
| I—1
Mnemonics A mnemonic program is a series of ladder diagram instructions given in their

mnemonic form. It has program addresses, and one program address is
equivalent to one instruction.

Example
000 001 002 003 102.00
Program Address Instruction (Mnemonic) Operand
0 LD 0.00
1 AND 0.01
2 LD 0.02
3 AND NOT 0.03
4 LD NOT 1.00
5 AND 1.01
6 OR LD
7 AND LD
8 ouT 102.00
9 END
Basic Ladder Program Concepts
1,2,3... 1. When ladder diagrams are executed by PLCs, the signal flow (power flow)

is always from left to right. Programming that requires power flow from right
to left cannot be used. Thus, flow is different from when circuits are made
up of hard-wired control relays. For example, when the circuit “a” is imple-
mented in a PLC program, power flows as though the diodes in brackets

23

Programming Concepts Section 1-1

were inserted and coil R2 cannot be driven with contact D included. The
actual order of execution is indicated on the right with mnemonics. To
achieve operation without these imaginary diodes, the circuit must be re-
written. Also, circuit “b” power flow cannot be programmed directly and
must be rewritten.

Circuit "a

Order of execution (mnemonic)

(6)
(@) .(7) ()LD A (6) AND B
)LD C (7)OUT R1

A@ Signal flow
—

c@@) p®@

| | (3) OUT TRO (8) LD TRO
I}) (4)AND D (9)AND E
E®) (10) | (5)OR LD (10) OUT R2
H ®
_—
Circuit " b"
] @
Le

®

In circuit “a,” coil R2 cannot be driven with contact D included.

In circuit “b,” contact E included cannot be written in a ladder diagram. The
program must be rewritten.

2. There is no limit to the number of 1/O bits, work bits, timers, and other input
bits that can be used. Rungs, however, should be kept as clear and simple
as possible even if it means using more input bits to make them easier to
understand and maintain.

3. Thereis no limit to the number of input bits that can be connected in series
or in parallel in series or parallel rungs.

4. Two or more output bits can be connected in parallel.

0.00 0.05
— | wH
0000
#100

102.00

()
N
5. Output bits can also be used as input bits.
102.00
1l 7\
1 — _ - - -
102000~
iy ()
i _/

24

Programming Concepts Section 1-1

Restrictions

1,2,3... 1. Aladder program must be closed so that signals (power flow) will flow from
the left bus bar to the right bus bar. A rung error will occur if the program is
not closed (but the program can be executed).

I ()
i N\

2. Output bits, timers, counters and other output instructions cannot be con-
nected directly to the left bus bar. If one is connected directly to the left bus
bar, a rung error will occur during the programming check by the CX-Pro-
grammer. (The program can be executed, but the OUT and MOV/(021) will
not be executed.)

/ Input condition must be provided.
()

/ —/

X MOV

Insert an unused N.C. work bit or the ON Condition Flag (Always ON Flag)
if the input must be kept ON at all times.

Unused work bit

Ly ()
—/

Al

ON (Always ON Flag)
] L

11 MOV

3. An input bit must always be inserted before and never after an output in-
struction like an output bit. If it is inserted after an output instruction, then
a location error will occur during the CX-Programmer program check.

0.00 0.03 102.01 ¢ .0.04
: : 7\ . 4]

25

Programming Concepts

Section 1-1

26

6.

Task (program)

The same output bit cannot be programmed in an output instruction more
than once. Instructions in a ladder program are executed in order from the
top rung in a single cycle, so the result of output instruction in the lower
rungs will be ultimately reflected in the output bit and the results of any pre-
vious instructions controlling the same bit will be overwritten and not out-
put.

(Output bit)
100.00
N\

(Output bit)
100.00
N\

| O

An input bit cannot be used in an OUTPUT instruction (OUT).

(Input bit)

0.00
11 R
1 @),

An END(001) instruction must be inserted at the end of the program in
each task.

If a program without an END(001) instruction starts running, a program
error indicating No End Instruction will occur, the ERR/ALM LED on the
front of the CPU Unit will light, and the program will not be executed.

If a program has more than one END(001) instruction, then the program
will only run until the first END(001) instruction.

Debugging programs will run much smoother if an END(001) instruction is
inserted at various break points between sequence rungs and the
END(001) instruction in the middle is deleted after the program is
checked.

Task (program)

000000
000000
Rttt 000001
: END
=5 END] Will not be executed.

Task (program)

Task (program)

000000 000000
000001 000001
Z END
=5 ' Will not be executed.
END

Task (program)

Task (program)

000000
000001 o000y
END END

Programming Concepts

Section 1-1

1-1-13 Inputting Mnemonics

A logical start is accomplished using an LD/LD NOT instruction. The area
from the logical start until the instruction just before the next LD/LD NOT

1,2,3...

instruction is considered a single instruction block.

Create a single rung consisting of two instruction blocks using an AND LD
instruction to AND the blocks or by using an OR LD instruction to OR the
blocks. The following example shows a complex rung that will be used to
explain the procedure for inputting mnemonics (rung summary and order).

1. First separate the rung into small blocks (a) to (f).

0.00 0.01 0.02 0.03 0.04 0.05 W0.00
— — || | {—} O—
10.00 10.01 0.06
— — Il
5.00
—
@00 001
—AHF
©h.04 0.05
®)10.00 10.01 @02 0.03 ——F
—AHF —A—
O 006
(1) —_—
© 500 m
| I \=)
(3)
2

27

Programming Concepts

Section 1-1

2. Program the blocks from top to bottom and then from left to right.

@500 001 ®1600 1001]
—-| | |
LD 0.00 LD 10.00
AND 0.01 AND 10.01 I
OR LD
)
‘r (2
© 500 s ©o.04 005
= e T (5)
OR 5.00 LD 0.04
AND 0.05
| | @)
@602 003 O 606
— = —
AND NOTO0.03
AND LD
? N
W0.00
—O0
OUT W0.00
Address | Instruction| Operand
@ 200 LD 0.00
201 AND 0.01 Q@
b |-202 LD 10.00
203 AND 10.01 (3)
204 OR LD 5)
(c) 205 OR 5.00
« 206 AND 0.02
207 AND NOT | 0.03 b
© 208 LD 0.04
209 AND 0.05 (4
) 210 OR 0.06 l
211 AND LD L
212 ouT WO0.00
1-1-14 Program Examples
Parallel/Series Rungs
0.00 0.01 0.02 0.03 102.00 Instruction [Operands
e e e 73 O D 0.00
102.00 AND 0.01 a
|_ OR 102.00
o AND 0.02
a—T AND NOT | 0.03 b
A block B block ouT 102.00

Program the parallel instruction in the A block and then the B block.

28

Programming Concepts Section 1-1

Series/Parallel Rungs

0.00 0.01 0.02 0.03 102.01 Instruction |Operands
}—u—u’——u—u O D 0.00]
102.01 AND NOT | 0.01 a
| —T] LD 0.02
0.04 AND 0.03
H — OR 102.01 | |b
OR 0.04
|__ a b — AND LD
A block B block ouT 102.01

» Separate the rung into A and B blocks, and program each individually.
» Connect A and B blocks with an AND LD.
* Program A block.

Instruction |[Operands
B1 block LD NOT 0.00]
a
0.00 0.01 0.02 0.03 102.02 AND 8-82
1 P2 LD .
‘ B R O AND NOT | 0.03 by
0.04 102.02 O NOT 508
H—= AND 102.02 b,
|._b2_.| ORLD b, + b,
B2 block AND LD a-b
|._ OouT 102.02
a ——sle——) —
A block B block

* Program B4 block and then program B, block.
» Connect B, and B, blocks with an OR LD and then A and B blocks with an

AND LD.
Example of Series
Cor)nectlon Ina a | b | Instruction |[Operands
Series Run | Al 5Iock| B1 block LD 0.00 i
0.00 0.01 0.04 0.05 102.03 AND NOT | 0.01 | &
——— |—4© LD NOT 002 _|1.
2
0.02 0.03|0.06 0.07 AND 0.03 i
_| |_H_ OR LD a +az
LD 0.04
by
|._ _.I ._bz_.l AND 0.05]
A2 block B2 block LD 0.06 b
) AND 007 ||
A block B block ORLD by + bz
AND LD a b
ouT 102.03

» Program A block, program A, block, and then connect A; and A, blocks
with an OR LD.
» Program B, and B, the same way.

» Connect A block and B block with an AND LD.

29

Programming Concepts

Section 1-1

» Repeat for as many A to n blocks as are present.

11 11 11 11 11 11 R
11 11 11 11 11 11
{ I I HHI {1
e——— a —_—t b —_—— c —_—t - -
A block B block C block
Complex Rungs
0.00 0.01 102.04 Instruction | Operand
— | i | O LD 0.00
0.02 0.03 '[B g'g;
I_ AND 0.03
0.04 0.05 ORLD
A AND LD
0.06 0.07 LD 0.04
— AND 0.05
OR LD -
LD 0.06
AND 0.07
OR LD ---
ouT 102.04
b— o —
Block
0.00 0.01 0.02 102.05
i H—I O
a—-| d
Block Block
0.03 0.04 0.05
1L (P4 11
11 p4l 11
¢ 0.06 0.07
Block |)
—
e
Block
The above rung can be rewritten as follows:
0.00 0.01 0.02 102.05
i iy {1 O
0.00 0.03 0.04 0.05
1 1L X 11
I 11 P4l 1
0.00 0.03 0.04 0.06 0.07
i 1} iy {4

30

0.00 0.01
1 11
I LAl
0.02
z —i—

0.03

| —

The diagram above is based
0.00 z

A
on the diagram below.

A

A simpler program can be written by rewriting

this as shown below.

0.02 0.03 0.00
— 1}
0.01
—
Instruction | Operand
LD 0.00 a
LD NOT 0.01 1 b
AND 0.02 i
LD 0.03 i c
AND NOT 0.04 i
LD 0.05 14
LD 0.06 J
AND NOT | 0.07 1e
OR LD --- |
AND LD d+e
OR LD (d+e)-c
AND LD (d+e)-c+b
ouT 102.05 | (d+e)-c+b)-a

Programming Concepts

Section 1-1

Rungs Requiring

Instruction | Operand
0.00 0.03 H0.00 — —
| | .
! H O OR 0.01
0.01 OR 0.02
— Egﬂ{ TiM OR HO.00
0001
0.02 7100 10 sec AND NOT | 0.03
I y— ouT H0.00
HO.00 T1 102.06 TIM 0001
| #100
! / AND T1
Error display ouT 102.06

Caution or Rewriting

If a holding bit is in use, the ON/OFF status would
be held in memory even if the power is turned OFF,
and the error signal would still be in effect when
power is turned back ON.

OR and OL LD Instructions

With an OR or OR NOT instruction, an OR is taken with the results of the lad-
der logic from the LD or LD NOT instruction to the OR or OR NOT instruction,
so the rungs can be rewritten so that the OR LD instruction is not required.

0.00 102.00 0.01 102.00 102.00
—i O | =

0.01 102.00 0.00
— —

Example: An OR LD instruction will be needed if the rungs are programmed
as shown without modification. A few steps can be eliminated by rewriting the
rungs as shown.

Output Instruction Branches

A TR bit will be needed if there is a branch before an AND or AND NOT
instruction. The TR bit will not be needed if the branch comes at a point that is
connected directly to output instructions and the AND or AND NOT instruction
or the output instructions can be continued as is.

Output instruction 1

0.00 001 102.08 0.00 102.09
: —() | == :
102.09 001 10208
—

Output instruction 2

Example: A temporary storage bit TRO output instruction and load (LD)
instruction are needed at a branch point if the rungs are programmed without
modification. A few steps can be eliminated by rewriting the rungs.

31

Programming Concepts

Section 1-1

32

Mnemonic Execution Order

PLCs execute ladder programs in the order the mnemonics are entered so
instructions may not operate as expected, depending on the way rungs are
written. Always consider mnemonic execution order when writing ladder dia-
grams.

0.00 110.00 0.00 110.00 102.10
: O | = HH— O
110.00 102.10 0.00 110.00

— |

Example: CIO 102.10 in the above diagram cannot be output. By rewriting the
rung, as shown above, CIO 102.10 can be turned ON for one cycle.

Rungs Requiring Rewriting
PLCs execute instructions in the order the mnemonics are entered so the sig-

nal flow (power flow) is from left to right in the ladder diagram. Power flows
from right to left cannot be programmed.

0.00 0.03 102.11 001 0.02 0.03 102.11
— | H—O = ¥ {1
0.01 0.02 0.00
—| # —
0.04 102.12 0.01 0.04 102.12
1 O — —

Example: The program can be written as shown in the diagram at the left
where TRO receives the branch. The same value is obtained, however, by the
rungs at the right, which are easier to understand. It is recommended, there-
fore, that the rungs at the left be rewritten to the rungs at the right.

Rewrite the rungs on the left below. They cannot be executed.
The arrows show signal flow (power flow) when the rungs consist of control
A

relays.
®
cC E
—i

ol E. D
—i———@- - —i——i—®)
(o

“

o}

Precautions

Section 1-2

1-2 Precautions

1-2-1 Condition Flags

Using Condition

Flags

Note

Conditions flags are shared by all instructions, and will change during a cycle
depending on results of executing individual instructions. Therefore, be sure
to use Condition Flags on a branched output with the same execution condi-
tion immediately after an instruction to reflect the results of instruction execu-
tion. Never connect a Condition Flag directly to the bus bar because this will
cause it to reflect execution results for other instructions.

Example: Using Instruction A Execution Results

Correct Use O
a Mnemonic

|| .
11 Instruction A

Instruction |JOperand

LD a
Reflects instruction A [nstruction A

Condition Flag ~ execution results. AND -
Example: =

Instruction B

] ;
— | Instruction B

The same execution condition (a) is used for instructions A and B to execute
instruction B based on the execution results of instruction A. In this case,
instruction B will be executed according to the Condition Flag only if instruc-
tion A is executed.

Incorrect Use x

Preceding rung

{ E Instruction A

Reflects the execution results of

the preceding rung if instruction

Condition Flag A'is not executed.

Example: =
I I Instruction B

If the Condition Flag is connected directly to the left bus bar, instruction B will
be executed based on the execution results of a previous rung if instruction A
is not executed.

Condition Flags are used by all instruction within a single program (task) but
they are cleared when the task switches. Therefore execution results in the
preceding task will not be reflected later tasks. Since conditions flags are
shared by all instructions, make absolutely sure that they do not interfere with
each other within a single ladder-diagram program. The following is an exam-

ple.

33

Precautions Section 1-2

Using Execution Results in N.C. and N.C. Inputs

The Condition Flags will pick up instruction B execution results as shown in
the example below even though the N.C. and N.O. input bits are executed
from the same output branch.

x : Instruction A

Incorrect |
Use i Reflects instruction A execution
Condition Flag results.
Example: =
—
|
i Reflects instruction B execution

Condition Flag "esults.

Example: =

L]

Make sure each of the results is picked up once by an OUTPUT instruction to
ensure that execution results for instruction B will be not be picked up.

| | .
t Reflects instruction A Instruction A
execution results. I
Correct Condition Flag c

Example; =
Use (:
Reflects instruction A
Condition Flag execution results.

Example: = D

c
H }——v Instruction B

_

Precautions

Section 1-2

Example: The following example will move #200 to D200 if D100 contains
#10 and move #300 to D300 if D100 does not contain #10.

X

Incorrect
Use

i
I

CMP

#10

D100

I Reflects CMP execution results.

g

1

MCV

#200

D200

Reflects MOV execution results.

MoV

| W
A

#300

D300

The Equals Flag will turn ON if D100 in the rung above contains #10. #200 will
be moved to D200 for instruction (1), but then the Equals Flag will be turned
OFF because the #200 source data is not 0000 hex. The MOV instruction at
(2) will then be executed and #300 will be moved to D300. A rung will there-
fore have to be inserted as shown below to prevent execution results for the
first MOVE instruction from being picked up.

O

Correct
Use

I i

1T

CMP

#10

D100

I Reflects CMP execution results.

A

N

O

S

A
I l MOV
#200
D200
B MOV
| ¥
A #300
D300

35

Precautions

Section 1-2

36

Using Execution Results from Differentiated Instructions

With differentiated instructions, execution results for instructions are reflected
in Condition Flags only when execution condition is met, and results for a pre-
vious rung (rather than execution results for the differentiated instruction) will
be reflected in Condition Flags in the next cycle. You must therefore be aware
of what Condition Flags will do in the next cycle if execution results for differ-
entiated instructions to be used.

In the following for example, instructions A and B will execute only if execution
condition C is met, but the following problem will occur when instruction B
picks up execution results from instruction A. If execution condition C remains
ON in the next cycle after instruction A was executed, then instruction B will
unexpectedly execute (by the execution condition) when the Condition Flag
goes from OFF to ON because of results reflected from a previous rung.

X Previous rung

Incorrect C
Use

{ I ? Instruction A

Reflects execution results for instruction
‘_' A when execution condition is met.
Reflects execution results for a previous
Condition Flag rung in the next cycle.
Example: =

“ I f Instruction B

In this case then, instructions A and B are not differentiated instructions, the
DIFU (of DIFD) instruction is used instead as shown below and instructions A
and B are both upwardly (or downwardly) differentiated and executed for one
cycle only.

O Previous rung

Cc
Correct I DIFU
Use [
D
D
]' i Instruction A

“ Reflects instruction A execution results.

Condition Flag
Example: =

|]

|

Instruction B

The CP1H CPU Units support instructions to save and load the Condition
Flag status (CCS(282) and CCL(283)). These can be used to access the sta-
tus of the Condition Flags at other locations in a task or in a different task.

Precautions

Section 1-2

Main Conditions Turning ON Condition Flags

Error Flag

Note
Equals Flag
Carry Flag

Note

Less Than and Greater
Than Flags

Negative Flag

Specifying Operands for
Multiple Words

The ER Flag will turn ON under special conditions, such as when operand
data for an instruction is incorrect. The instruction will not be executed when
the ER Flag turns ON.

When the ER Flag is ON, the status of other Condition Flags, such as the <,
>, OF, and UF Flags, will not change and status of the = and N Flags will vary
from instruction to instruction.

Refer to the descriptions of individual instructions in the CP-series CP1H CPU
Unit Programming Manual (W451) for the conditions that will cause the ER
Flag to turn ON. Caution is required because some instructions will turn OFF
the ER Flag regardless of conditions.

The PLC Setup Settings for when an instruction error occurs determines
whether operation will stop when the ER Flag turns ON. In the default setting,
operation will continue when the ER Flag turns ON. If Stop Operation is spec-
ified when the ER Flag turns ON and operation stops (treated as a program
error), the program address at the point where operation stopped will be
stored at in A298 to A299. At the same time, A295.08 will turn ON.

The Equals Flag is a temporary flag for all instructions except when compari-
son results are equal (=). It is set automatically by the system, and it will
change. The Equals Flag can be turned OFF (ON) by an instruction after a
previous instruction has turned it ON (OFF). The Equals Flag will turn ON, for
example, when MOV or another move instruction moves 0000 hex as source
data and will be OFF at all other times. Even if an instruction turns the Equals
Flag ON, the move instruction will execute immediately and the Equals Flag
will turn ON or OFF depending on whether the source data for the move
instruction is 0000 hex or not.

The CY Flag is used in shift instructions, addition and subtraction instructions
with carry input, addition and subtraction instruction borrows and carries, as
well as with Special I/0O Unit instructions, PID instructions, and FPD instruc-
tions. Note the following precautions.

(1) The CY Flag can remain ON (OFF) because of execution results for a cer-
tain instruction and then be used in other instruction (an addition and sub-
traction instruction with carry or a shift instruction). Be sure to clear the
Carry Flag when necessary.

(2) The CY Flag can be turned ON (OFF) by the execution results for a cer-
tain instruction and be turned OFF (ON) by another instruction. Be sure
the proper results are reflected in the Carry Flag when using it.

The < and > Flags are used in comparison instruction, as well as in the LMT,
BAND, ZONE, PID and other instructions.

The < or > Flag can be turned OFF (ON) by another instruction even if it is
turned ON (OFF) by execution results for a certain instruction.

The N Flag is turned OFF when the leftmost bit of the instruction execution
results word is “1” for certain instructions and it is turned OFF unconditionally
for other instruction.

With the CP-series PLCs, an instruction will be executed as written even if an
operand requiring multiple words is specified so that all of the words for the
operand are not in the same area. In this case, words will be taken in order of
the PLC memory addresses. The Error Flag will not turn ON.

37

Precautions

Section 1-2

As an example, consider the results of executing a block transfer with
XFER(070) if 20 words are specified for transfer beginning with W500. Here,
the Work Area, which ends at W511, will be exceeded, but the instruction will
be executed without turning ON the Error Flag. In the PLC memory
addresses, the present values for timers are held in memory after the Work
Area, and thus for the following instruction, W500 to W511 will be transferred
to DO to D11 and the present values for TO to T7 will be transferred to D12 to

D109.
Note For specific PLC memory addresses in CP1H CPU Units, refer to Appendix E:
Memory Map in the CP Series CP1H CPU Units Operation Manual (W450).
For specific PLC memory addresses in CP1L CPU Units, refer to Appendix E:
Memory Map in the CP Series CP1L CPU Units Operation Manual (W462).
XFER W500) Do
to to ;I'ranz- to to
erred.
&20| Number of words W511 |< D11
WS500] First source word TO D12
. o to to to to
DO} First destination word 17 J D19

1-2-2 Special Program Sections

CP-series programs have special program sections that will control instruction

conditions. The following special program sections are available.

Program section

Instructions

Instruction condition

Status

Subroutine SBS, SBN and RET instruc- | Subroutine program is | The subroutine program section between
tions executed. SBN and RET instructions is executed.
IL - ILC section IL and ILC instructions Section is interlocked | The output bits are turned OFF and tim-

Step Ladder section

STEP S instructions and
STEP instructions

ers are reset. Other instructions will not
be executed and previous status will be

maintained.
FOR-NEXT loop FOR instructions and NEXT | Break in progress. Looping
instructions
JMPO - JMEO section | JMPO instructions and JMEO Jump
instructions

Block program section

BPRG instructions and
BEND instructions

cuting.

Block program is exe-

The block program listed in mnemonics
between the BPRG and BEND instruc-
tions is executed.

Instruction

Combinations

The following table shows which of the special instructions can be used inside
other program sections.

Subroutine IL-ILC Step ladder FOR - NEXT | JMPO-JMEO |Blockprogram
section section loop section section

Subroutine Not possible. Not possible. Not possible. Not possible. Not possible. Not possible.
IL-ILC OK Not possible. Not possible. OK OK Not possible.
Step ladder Not possible. OK Not possible. Not possible. OK Not possible.
section
FOR - NEXT OK OK Not possible. OK OK Not possible.
loop
JMPO - JIMEO |OK OK Not possible. Not possible. Not possible. Not possible.
Block pro- OK OK OK Not possible. OK Not possible.
gram section

38

Precautions

Section 1-2

Subroutines

Instructions Not

Available in
Subroutines

Note

Note

Instructions that specify program areas cannot be used for programs in other
tasks. Refer to 2-2-2 Task Instruction Limitations for details.

Place all the subroutines together just before the END(001) instruction in all
programs but after programming other than subroutines. (Therefore, a subrou-
tine cannot be placed in a step ladder, block program, FOR - NEXT, or JMPO -
JMEO section.) If a program other than a subroutine program is placed after a
subroutine program (SBN to RET), that program will not be executed.

Program

Subroutine

Program

Subroutine

The following instructions cannot be placed in a subroutine.

Function Mnemonic Instruction
Process Step Control STEP(008) Define step ladder section
SNXT(009) Step through the step ladder

Block Program Sections

A subroutine can include a block program section. If, however, the block pro-
gram is in WAIT status when execution returns from the subroutine to the
main program, the block program section will remain in WAIT status the next
time it is called.

Instructions Not Available in Step Ladder Program Sections

Function Mnemonic Instruction
Sequence Control | FOR(512), NEXT(513), and FOR, NEXT, and BREAK
BREAK(514) LOOP
END(001) END
IL(002) and ILC(003) INTERLOCK and INTER-
LOCK CLEAR
JMP(004) and JME(005) JUMP and JUMP END

CJP(510) and CIJPN(511) CONDITIONAL JUMP and
CONDITIONAL JUMP NOT

JMPO(515) and JMEO(516) | MULTIPLE JUMP and MULTI-
PLE JUMP END

Subroutines SBN(092) and RET(093) SUBROUTINE ENTRY and
SUBROUTINE RETURN

39

Precautions Section 1-2

Function Mnemonic Instruction

Block Programs IF(802) (NOT), ELSE(803), Branching instructions
and IEND(804)

BPRG(096) and BEND(801) |BLOCK PROGRAM

BEGIN/END
EXIT(806) (NOT) CONDITIONAL BLOCK EXIT
(NOT)
LOOP(809) and LEND(810) Loop control
(NOT)
WAIT(805) (NOT) ONE CYCLE WAIT (NOT)
TIMW(813) and TIMWX(816) | TIMER WAIT
TMHW(815) and HIGH-SPEED TIMER WAIT
TMHWX(817)

CNTW(814) and CNTWX(818) | COUNTER WAIT

BPPS(811) and BPRS(812) BLOCK PROGRAM PAUSE
and RESTART

Note (1) A step ladder program section can be used in an interlock section (be-
tween IL and ILC). The step ladder section will be completely reset when
the interlock is ON.

(2) A step ladder program section can be used between MULTIPLE JUMP
(JMP0) and MULTIPLE JUMP END (JMEO).

Instructions Not The following instructions cannot be placed in block program sections.
Supported in _BIOCk Classification by Mnemonic Instruction
Program Sections Function
Sequence Control FOR(512), NEXT(513), FOR, NEXT, and BREAK
and BREAK(514) LOOP
END(001) END
IL(002) and ILC(003) INTERLOCK and INTER-
LOCK CLEAR
JMPO(515) and JMEO(516) | MULTIPLE JUMP and
MULTIPLE JUMP END
Sequence Input UP(521) CONDITION ON
DOWN(522) CONDITION OFF
Sequence Output DIFU DIFFERENTIATE UP
DIFD DIFFERENTIATE DOWN
KEEP KEEP
ouT OUTPUT
OUT NOT OUTPUT NOT
Timer/Counter TIM and TIMX(550) TIMER
TIMH(015) and HIGH-SPEED TIMER
TIMHX(551)
TMHH(540) and ONE-MS TIMER
TMHHX(552)
TTIM(087) and ACCUMULATIVE TIMER
TTIMX(555)
TIML(542) and LONG TIMER
TIMLX(553)
MTIM(543) and MULTI-OUTPUT TIMER
MTIMX(554)
CNT and CNTX(546) COUNTER
CNTR(012) and REVERSIBLE COUNTER
CNTRX(548)

40

Checking_; Programs Section 1-3

Classification by Mnemonic Instruction
Function
Subroutines SBN(092) and RET(093) SUBROUTINE ENTRY
and SUBROUTINE
RETURN
Data Shift SFT SHIFT
Ladder Step Control STEP(008) and STEP DEFINE and STEP
SNXT(009) START
Data Control PID PID CONTROL
Block Program BPRG(096) BLOCK PROGRAM
BEGIN
Damage Diagnosis FPD(269) FAILURE POINT DETEC-
TION
Instructions with a differen- | @ XXX Instruction with upward dif-
tiation option ferentiation
%XXX Instruction with downward
differentiation

Note (1) Block programs can be used in a step ladder program section.

(2) A block program can be used in an interlock section (between IL and ILC).
The block program section will not be executed when the interlock is ON.

(3) A block program section can be used between MULTIPLE JUMP (JMPO)
and MULTIPLE JUMP END (JMEDO).

(4) A JUMP instruction (JMP) and CONDITIONAL JUMP instruction
(CJIP/CJPN) can be used in a block program section. JUMP (JMP) and
JUMP END (JME) instructions, as well as CONDITIONAL JUMP
(CJP/CJPN) and JUMP END (JME) instructions cannot be used in the
block program section unless they are used in pairs. The program will not
execute properly unless these instructions are paired.

1-3 Checking Programs

CP-series programs can be checked at the following stages.
* Input check during CX-Programmer input and other operations
» Program check by CX-Programmer
« Instruction check during execution
* Fatal error check (program errors) during execution

1-3-1 CX-Programmer

The program will be automatically checked by the CX-Programmer at the fol-

lowing times.
Timing Checked contents

When inputting ladder | Instruction inputs, operand inputs, programming patterns

diagrams

When loading files All operands for all instructions and all programming pat-
terns

When downloading files | Models supported by the CP Series and all operands for all
instructions

During online editing Capacity, etc.

The results of checking are output to the text tab of the Output Window. Also,
the left bus bar of illegal program sections will be displayed in red in ladder
view.

41

Checking_; Programs Section 1-3

1-3-2 Program Checks with the CX-Programmer

The errors that are detected by the program check provided by the CX-Pro-
grammer are listed in the following table.

The CX-Programmer does not check range errors for indirectly addressed
operands in instructions. Indirect addressing errors will be detected in the pro-
gram execution check and the ER Flag will turn ON, as described in the next
section. Refer to individual instruction descriptions for details.

When the program is checked on the CX-Programmer, the operator can spec-
ify program check levels A, B, and C (in order of the seriousness of the error),
as well as a custom check level.

Area Check
lllegal data: Ladder | Instruction locations
diagramming /O lines
Connections

Instruction and operation completeness
Instruction support | Instructions and operands supported by PLC

by PLC Instruction variations (NOT, !, @, and %)
Object code integrity
Operand ranges Operand area ranges

Operand data types

Access check for read-only words

Operand range checks, including the following.
e Constants (#, &, +, -)

« Control codes

* Area boundary checks for multi-word operands
« Size relationship checks for multi-word operands
» Operand range overlaps

 Multi-word allocations

« Double-length operands

« Area boundary checks for offsets

Program capacity Number of steps

for PLC Overall capacity
Number of tasks

Syntax Call check for paired instructions
eIL-ILC

* JMP-JME, CJP/CIPN-JME

* SBS-SBN-RET, MCRO-SBN-RET

* STEP-SNXT

* BPRG-BEND

* IF-IEND

* LOOP-LEND

Restricted programming locations for BPRG-BEND
Restricted programming locations for SBN-RET
Restricted programming locations for STEP—SNXT
Restricted programming locations for FOR—-NEXT
Restricted programming locations for interrupt tasks
lllegal nesting

END(001) instruction

Number consistency

Ladder diagram Stack overflows
structure

42

Checking Programs

Section 1-3

Note

Multi-word Operands

Area Check
Output duplication | Duplicate output check
(See note.) * By hit
* By word

* FAL numbers

« Timer/counter instructions

* Long words (2-word and 4-word)
» Multiple allocated words

« Start/end ranges

« Instructions with multiple output operands

Tasks

Check for tasks set for starting at beginning of operation

Task program allocation

Output duplication is not checked

between tasks, only within individual tasks.

Memory area boundaries are checked for multi-word operands for the pro-
gram check as shown in the following table.

Check items

» Compiling errors

The following functionality is provided by the CX-Programmer for
multi-word operands that exceed a memory area boundary.

» The program cannot be transferred to the CPU Unit.
» The program also cannot be read from the CPU Unit.

« Warnings will appear on-screen during offline programming.

» Warnings will appear on-screen during online editing in PRO-
GRAM or MONITOR mode.

are generated for the program check.

1-3-3 Program Execution Check

Operand and instruction location

checks are performed on instructions during

input and during program checks from the CX-Programmer. These are not,

however, final checks.
The following checks are perform

ed during instruction execution.

Type of error

Flag that turns ON for error

Stop/Continue operation

1. Instruction Processing Error

ER Flag

Note The Instruction Processing
Error Flag (A295.08) will
also turn ON if Stop Opera-
tion is specified when an
error occurs.

A setting in the PLC Setup can be used to spec-
ify whether to stop or continue operation for
instruction processing errors. The default is to
continue operation.

A program error will be generated and operation
will stop only if Stop Operation is specified.

2. Access Error

AER Flag

Note The Access Error Flag
(A295.10) will turn ON if
Stop Operation is specified
when an error occurs.

A setting in the PLC Setup can be used to spec-
ify whether to stop or continue operation for
instruction processing errors. The default is to
continue operation.

A program error will be generated and operation
will stop only if Stop Operation is specified.

3. lllegal Instruction Error

lllegal Instruction Error Flag
(A295.14)

Fatal (program error)

4. UM (User Memory) Overflow
Error

UM Overflow Error Flag (A295.15)

Fatal (program error)

Instruction
Processing Errors

An instruction processing error will occur if incorrect data was provided when
executing an instruction or an attempt was made to execute an instruction out-
side of a task. Here, data required at the beginning of instruction processing
was checked and as a result, the instruction was not executed, the ER Flag
(Error Flag) will be turned ON and the EQ and N Flags may be retained or
turned OFF depending upon the instruction.

43

Checking Programs

Section 1-3

lllegal Access Errors

1,2,3...

Note

Other Errors

lllegal Instruction Errors

UM (User Memory)
Overflow Errors

The ER Flag (error Flag) will turn OFF if the instruction (excluding input
instructions) ends normally. Conditions that turn ON the ER Flag will vary with
individual instructions. See descriptions of individual instructions in for details.

If Instruction Errors are set to Stop Operation in the PLC Setup, then opera-
tion will stop (fatal error) and the Instruction Processing Error Flag (A295.08)
will turn ON if an instruction processing error occurs and the ER Flag turns
ON.

lllegal access errors indicate that the wrong area was accessed in one of the
following ways when the address specifying the instruction operand was
accessed.

1. Aread or write was executed for a parameter area.

2. A write was executed in a memory area that is not mounted (See note.).
3. A write was executed in a read-only area.
4

The value specified in an indirect DM address in BCD mode was not BCD
(e.g., *D1 contains #A000).

Note An IR register containing the internal memory address of a bit is
used as a word address or an IR containing the internal memory
address of a word is used as a bit address.

Instruction processing will continue and the Error Flag (ER Flag) will not turn
ON if an access error occurs, but the Access Error Flag (AER Flag) will turn
ON.

If Instruction Errors are set to Stop Operation in the PLC Setup, then opera-
tion will stop (fatal error) and the “lllegal Access Error Flag” (A295.10) will turn
ON if an illegal access error occurs and the AER Flag turns ON.

The Access Error Flag (AER Flag) will not be cleared after a task is executed.
If Instruction Errors are set to Continue Operation, this Flag can be monitored
until just before the END(001) instruction to see if an illegal access error has
occurred in the task program. (The status of the final AER Flag after the entire
user program has been executed will be monitored if the AER Flag is moni-
tored on the CX-Programmer.)

lllegal instruction errors indicate that an attempt was made to execute instruc-
tion data other than that defined in the system. This error will normally not
occur as long as the program is created on a the CX-Programmer.

In the rare even that this error does occur, it will be treated as a program error,
operation will stop (fatal error), and the lllegal Instruction Flag (A295.14) will
turn ON.

UM overflow errors indicate that an attempt was made to execute instruction
data stored beyond the last address in the user memory (UM) defined as pro-
gram storage area. This error will normally not occur as long as the program is
created on the CX-Programmer.

In the rare even that this error does occur, it will be treated as a program error,
operation will stop (fatal error), and the UM Overflow Flag (A295.15) will turn
ON.

Checking Programs

Section 1-3

1-3-4 Checking Fatal Errors

The following errors are fatal program errors and the CPU Unit will stop run-
ning if one of these occurs. When operation is stopped by a program error, the
task number where operation stopped will be stored in A294 and the program
address will be stored in A298/A299. The cause of the program error can be
determined from this information.

Address Description Stored Data
A294 The type of task and the task number at the Cyclic task: 0000 to 001F hex (cyclic tasks 0 to 31)
point where operation stopped will be stored Interrupt task: 8000 to 80FF hex (interrupt tasks 0 to 255)
here if operation stops due to a program error.
Note FFFF hex will be stored if there are no
active cyclic tasks in a cycle, i.e., if there
are no cyclic tasks to be executed.
A298/A299 | The program address at the point where opera- | A298: Rightmost portion of program address

tion stopped will be stored here in binary if
operation stops due to a program error.

Note If the END(001) instruction is missing
(A295.11 will be ON), the address where
END(001) was expected will be stored.

Note If there is a task execution error (A295.12
will be ON), FFFFFFFF hex will be stored

A299: Leftmost portion of program address

in A298/A299.

Note

If the Error Flag or Access Error Flag turns ON, it will be treated as a program
error and it can be used to stop the CPU from running. Specify operation for

program errors in the PLC Setup.

Program error

Description

Related flags

No END Instruction

An END instruction is not present in the
program.

The No END Flag (A295.11) turns ON.

Error During Task Execution

No task is ready in the cycle.
No program is allocated to a task.

The corresponding interrupt task number is
not present even though the execution
condition for the interrupt task was met.

The Task Error Flag (295.12) turns ON.

Instruction Processing Error (ER
Flag ON) and Stop Operation set
for Instruction Errors in PLC Setup

The wrong data values were provided in
the operand when an attempt was made to
execute an instruction.

The ER Flag turns ON and the Instruc-
tion Processing Error Flag (A295.08)
turns ON if Stop Operation set for
Instruction Errors in PLC Setup.

lllegal Access Error (AER Flag ON)
and Stop Operation set for Instruc-
tion Errors in PLC Setup

A read or write was executed for a parame-
ter area.

A write was executed in a memory area
that is not mounted.

A write was executed in a read-only area.

The value specified in an indirect DM
address in BCD mode was not BCD.

AER Flag turns ON and the lllegal
Access Error Flag (A295.10) turns ON
if Stop Operation set for Instruction
Errors in PLC Setup

Indirect DM BCD Error and Stop
Operation set for Instruction Errors
in PLC Setup

The value specified in an indirect DM
address in BCD mode is not BCD.

AER Flag turns ON and the DM Indi-
rect BCD Error Flag (A295.09) turns
ON if Stop Operation set for Instruction
Errors in PLC Setup

Differentiation Address Overflow
Error

During online editing, more than 131,072
differentiated instructions have been
inserted or deleted.

The Differentiation Overflow Error Flag
(A295.13) turns ON.

45

| ntroducing Function Blocks Section 1-4

Program error Description Related flags

UM (User Memory) Overflow Error | An attempt was made to execute instruc- | The UM (User Memory) Overflow Flag
tion data stored beyond the last address in | (A295.5) turns ON.

user memory (UM) defined as program
storage area.

lllegal Instruction Error An attempt was made to execute an The lllegal Instruction Flag (A295.14)
instruction that cannot be executed. turns ON.

1-4 Introducing Function Blocks

Function blocks can be used with CP-series CPU Units. Refer to the CX-Pro-
grammer Ver. 7.0 Operation Manual Function Blocks (W447) for details on
actually using function blocks.

1-4-1 Overview and Features

Function blocks conforming to the IEC 61131-3 standard can be used with
CX-Programmer Ver. 5.0 and higher. These function blocks are supported by
CS/CJ-series CPU Units with unit version 3.0 or later and by CP-series CPU
Units. The following features are supported.

» User-defined processes can be converted to block format by using func-
tion blocks.

 Function block algorithms can be written in the ladder programming lan-
guage or in the structured text (ST) language. (See note.)

» When ladder programming is used, ladder programs created with non-
CX-Programmer Ver. 4.0 or earlier can be reused by copying and past-
ing.

* When ST language is used, it is easy to program mathematical pro-
cesses that would be difficult to enter with ladder programming.

Note The ST language is an advanced language for industrial control
(primarily Programmable Logic Controllers) that is described in IEC
61131-3. The ST language supported by CX-Programmer con-
forms to the IEC 61131-3 standard.

Function blocks can be created easily because variables do not have to
be declared in text. They are registered in variable tables.

A variable can be registered automatically when it is entered in a ladder or
ST program. Registered variables can also be entered in ladder programs
after they have been registered in the variable table.

A single function block can be converted to a library function as a single
file, making it easy to reuse function blocks for standard processing.

A program check can be performed on a single function block to easily
confirm the function block’s reliability as a library function.

Programs containing function blocks (ladder programming language or
structured text (ST) language) can be downloaded or uploaded in the
same way as standard programs that do not contain function blocks.
Tasks containing function blocks, however, cannot be downloaded in task
units (uploading is possible).

One-dimensional array variables are supported, so data handling is eas-
ier for many applications.

46

I ntroducing Function Blocks

Section 1-4

Note The IEC 61131 standard was defined by the International Electro-

technical Commission (IEC) as an international programmable log-
ic controller (PLC) standard. The standard is divided into 7 parts.
Specifications related to PLC programming are defined in Part 3
Textual Languages (IEC 61131-3).

« A function block (ladder programming language or structured text (ST)
language) can be called from another function block (ladder programming
language or structured text (ST) language). Function blocks can be
nested up to 8 levels and ladder/ST language function blocks can be com-
bined freely.

1-4-2 Function Block Specifications

For specifications that are not listed in the following table, refer to the CX-Pro-
grammer Ver. 7.0 Operation Manual Function Blocks (W447).

Item

Specifications

Model number

WS02-CXPC1-E-V6

Setup disk

CD-ROM

Compatible CPU Units

CP-series CPU Units with unit version 1.0 or later

CS/CJ-series CS1-H, CJ1-H, and CJ1M CPU Units with unit version 3.0 or
later are compatible.

Device Type CPU Type

*CS1G-H CS1G-CPU42H/43H/44H/45H
*CS1H-H CS1H-CPU63H/64H/65H/66H/67H
*CJ1G-H CJ1G-CPU42H/43H/44H/45H

* CJ1H-H CJ1H-CPUB5H/66H/67H

*CJIM CJ1M-CPU11/12/13/21/22/23

CSJ/CJI/CP Series Function Restrictions

« Instructions Not Supported in Function Block Definitions
Block Program Instructions (BPRG and BEND), Subroutine Instructions
(SBS, GSBS, RET, MCRO, and SBN), Jump Instructions (JMP, CJP, and
CJPN), Step Ladder Instructions (STEP and SNXT), Immediate Refresh
Instructions (!), /O REFRESH (IORF), ONE-MS TIMER (TMHH).

Compatible
computers

Computer IBM PC/AT or compatible

CPU 133 MHz Pentium or faster with Windows 98, 98SE, or NT 4.0 (with service
pack 6 or higher)

oS Microsoft Windows 95, 98, 98SE, Me, 2000, XP, or NT 4.0 (with service pack
6 or higher)

Memory 64 Mbytes min. with Windows 98, 98SE, or NT 4.0 (with service pack 6 or

higher)
Refer to the CX-Programmer Ver. 7.0 Operation Manual (W437) for details.

Hard disk space

100 Mbytes min. available disk space

Monitor

SVGA (800 x 600 pixels) min.
Note Use “small font” for the font size.

CD-ROM drive One CD-ROM drive min.
COM port One RS-232C port min.
Note The structured text (ST language) conforms to the IEC 61131-3 standard, but

CX-Programmer Ver. 5.0 supports only assignment statements, selection
statements (CASE and IF statements), iteration statements (FOR, WHILE,
REPEAT, and EXIT statements), RETURN statements, arithmetic operators,
logical operators, comparison functions, numeric functions, and comments.

47

| ntroducing Function Blocks Section 1-4

1-4-3 Files Created with CX-Programmer

Project Files (*.cxp)

Function Block Library
Files (*.cxf)

Note

Project Text Files
Containing Function
Blocks (*.cxt)

48

Projects created using CX-Programmer that contain function block definitions
and projects with instances are saved in the same standard project files
(*.cxp).

The following diagram shows the contents of a project. The function block def-
initions are created at the same directory level as the program within the rele-
vant PLC directory.

Project file (.cxp)

— PLC1 — Global symbol table

— 1/O table

— PLC Setup

— PLC memory table

— Program (with rung comments)

—Local symbol table

— Section 1 (with instances) -

— Section 2 (with instances) -*+----q
\

—— END section (with instances) <------':
|
— Function block definitions i

3

— FunctionBlockl L : Each function block can be

] ! stored in a separate
— FunctionBlock2 » definition file (.cxf).
! J Instances created

in program

PLC% sections.
|

A function block definition created in a project with CX-Programmer can be
saved as a file (1 definition = 1 file), enabling definitions to be loaded into
other programs and reused.

When function blocks are nested, all of the nested (destination) function block
definitions are included in this function block library file (.cxf).

Data equivalent to that in project files created with CX-Programmer (*.cxp)
can be saved as CXT text files (*.cxt).

This section describes the operation of tasks and how to use tasks in programming.

2-1 ProgrammingWith Tasks.ot
2-1-1 0 OVEIVIBW. oottt e
2-1-2 Tasksand Programsouiiiiin i
2-1-3 BasicCPU Unit Operationcoouiininiiiaann
2-1-4 Typesof Tasks . ..ot
2-1-5 Task Execution Conditionsand Settings
2-1-6 CyclicTask StaUS.o oi et e e
2-1-7 SEUSTranSitionNSt
2-2 USINg TasKS. . oot
2-221 TASKONandTASK OFF.ot
2-2-2 Task Instruction Limitations.,
2-2-3 FlagsRelatedto Tasks v e i
2-2-4 Examplesof Tasksot
2-2-5 DesignNiNg TaskS . ..o v i e
2-2-6 Global Subroutine. i
2-3 INtErruUPt TasKsS. . . oo oot
2-3-1 Typesof Interrupt TaskSo v e
2-3-2 Interrupt Task FlagsandWords oot
2-3-3 Application Precautions oot

2-4 CX-Programmer Operations for Tasks

SECTION 2

50

52
53

56
56
57
58
58
61
62
65
66
68
68
68
73
74
75

Tasks

49

Programming with Tasks Section 2-1

2-1 Programming with Tasks

2-1-1 Overview

CP-series CPU Unit control operations can be divided by functions, controlled
devices, processes, developers, or any other criteria and each operation can
be programmed in a separate unit called a “task.” Using tasks provides the fol-
lowing advantages:

1,2,3... 1. Programs can be developed simultaneously by several people.

Individually designed program parts can be assembled with very little effort
into a single user program.
2. Programs can be standardized in modules.
More specifically, the following the CX-Programmer functions will be com-
bined to develop programs that are standalone standard modules rather
than programs designed for specific systems (machines, devices). This
means that programs developed separately by several people can be
readily combine.
* Programming using symbols
* Global and local designation of symbols
» Automatic allocation of local symbols to addresses
3. Improved overall response.

Overall response is improved because the system is divided into an overall
control program as well as individual control programs, and only specific
programs will be executed as needed.

4. Easy revision and debugging.

» Debugging is much more efficient because tasks can be developed
separately by several people, and then revised and debugged by indi-
vidual task.

» Maintenance is simple because only the task that needs revising will
be changed in order to make specification or other changes.

» Debugging is more efficient because it is easy to determine whether
an address is specific or global and addresses between programs only
need to be checked once during debugging because symbols are des-
ignated globally or locally and local symbols are allocated automatical-
ly to addresses through the CX-Programmer.

5. Easy to switch programs.

A task control instruction in the program can be used to execute product-
specific tasks (programs) when changing operation is necessary.

6. Easily understood user programs.

Programs are structured in blocks that make the programs much simpler
to understand for sections that would conventionally be handled with in-
structions like jump.

50

Programming with Tasks Section 2-1
Earlier system CPIH
Task 1
One continuous l
subprogram .
Allocation
b0 -
|—O_ Tasks can be
— l put into non-
Task 2 executing
i status. development and
............. : — debugging is
I—E possible by more
— \ than one person.
Task 3 l

o

|

| I/O refreshing I

I

Note

|

1/O refreshing |

I

Unlike earlier programs that can be compared to reading a scroll, tasks can
be compared to reading through a series of individual cards.

* All cards are read in a preset sequence starting from the lowest number.

« All cards are designated as either active or inactive, and cards that are
inactive will be skipped. (Cards are activated or deactivated by task con-

trol instructions.)

A card that is activated will remain activated and will be read in subse-
guent sequences. A card that is deactivated will remain deactivated and
will be skipped until it is reactivated by another card.

51

Programming with Tasks Section 2-1

2-1-2 Tasks and Programs
Up to 288 programs (tasks) can be controlled. Individual programs are allo-
cated 1:1 to tasks. Tasks are broadly grouped into the following types:
* Cyclic tasks
* Interrupt tasks

Each program allocated to a task is executed independently and must end
with an END(001) instruction. I/O refreshing will be executed only after all task
programs in a cycle have been executed.

Program A

>
<)
e}
=4
=
=

Program B

Interrupt \/
task 100 I :
Allocation

Program C

Allocation ~~__ _ |

@ Program D
Allocation T R)q
I I/0 refreshing I

—t

52

Programming with Tasks

Section 2-1

2-1-3 Basic CPU Unit Operation

The CPU Unit will execute cyclic tasks starting at the task with the lowest
number. It will also interrupt cyclic task execution to execute an interrupt task
if an interrupt occurs.

] 3
Cyclic task 0

Executed in order starting
at the lowest number.

Cyclic task 1

Cyclic task n

|

)

Interrupt task 5 l

L
O
Interrupt
occurs.
»

|

1/0 refresh

Peripheral processing

L

Note All Condition Flags (ER, CY, Equals, AER, etc.) and instruction conditions

(interlock ON, etc.) will be cleared at the beginning of a task. Therefore Condi-

tion Flags cannot be read nor can INTERLOCK/INTERLOCK CLEAR (IL/ILC)

tasks.

instructions, JUMP/JUMP END (JMP/JME) instructions, or SUBROUTINE
CALL/SUBROUTINE ENTRY (SBS/SBN) instructions be split between two

Interrupt task can be executed as cyclic tasks by starting them with TKON.
These are called “extra cyclic tasks.” Extra cyclic tasks (interrupt task numbers
0 to 255) are executed starting at the lowest task number after execution of
the normal cyclic task (celiac task numbers 0 to 31) has been completed.

53

Programming with Tasks

Section 2-1

Cyclic task 0 l

]
O

l END

Cyclic task n

]
O

END

Executed in order starting at
lowest number of the cyclic tasks.

> Normal cyclic tasks

!

Extra cyclic task 0
\

O

—{ Enp |-

Executed in order starting at lowest
number of the extra cyclic tasks.

> Extra cyclic tasks
Extra cyclic task m

1/0 refresh

Peripheral
processing

i

)

2-1-4 Types of Tasks

Cyclic Tasks

Interrupt Tasks

Tasks are broadly classified as either cyclic tasks or interrupt tasks. Interrupt
tasks are further divided into scheduled, input, high-speed counter, and exter-
nal interrupt tasks. Interrupt tasks can also be executed as extra cyclic tasks.

A cyclic task that is READY will be executed once each cycle (from the top of
the program until the END(001) instruction) in numerical order starting at the
task with the lowest number. The maximum number of cyclic tasks is 32.
(Cyclic task numbers: 00 to 31).

An interrupt task will be executed if an interrupt occurs even if a cyclic task
(including extra cyclic tasks) is currently being executed. The interrupt task
will be executed using any time in the cycle, including during user program
execution, /O refreshing, or peripheral servicing, when the execution condi-
tion for the interrupt is met.

Interrupt tasks can also be executed as extra cyclic tasks.

Programming with Tasks

Section 2-1

Input Interrupts (Direct
Mode and Counter Mode)

Scheduled Interrupt Tasks

High-speed Counter
Interrupts

External Interrupt Tasks
(CP1H CPU Units)

Extra Cyclic Tasks

Note

An interrupt task can be executed each time one of the built-in inputs on the
CPU Unit turns ON or OFF (Direct Mode) or when a specified number of
inputs has been counted (Count Mode).

CPU Unit model Number of tasks | Interrupt task numbers
CP1H |Xor XA 8 tasks max. 140 to 147

Y 6 tasks max. 140 to 145
CP1L | M (30 or 40 I/O points) 6 tasks max. 140 to 145

L (20 1/O points) 6 tasks max. 140 to 145

L (14 1/O points) 4 tasks max. 140 to 143

A scheduled interrupt task will be executed at a fixed interval based on the
internal timer of the CPU Unit. Only one scheduled interrupt tasks can be
used (interrupt task number:2).

Pulse inputs to a built-in high-speed counter in the CPU Unit can be counted
to trigger execution of an interrupt.

A user-specified interrupt task (interrupt task numbers 0 to 255) can be exe-
cuted when an external interrupt occurs.

The interrupt task will be executed when requested by a user program running
in a CJ-series Special 1/0 Unit or CJ-series CPU Bus Unit.

Up to 256 external interrupt tasks can be used (interrupt task numbers: O to
255). If an external interrupt task has the same number as scheduled, input,
or high-speed counter interrupt task, the interrupt task will be executed for
either condition (the two conditions will operate with OR logic) but basically
task numbers should not be duplicated.

An interrupt tasks can be executed every cycle, just like the normal cyclic
tasks. Extra cyclic tasks (interrupt task numbers 0 to 255) are executed start-
ing at the lowest task number after execution of the normal cyclic task (cyclic
task numbers 0 to 31) has been completed. The maximum number of extra
cyclic tasks is 256 (Interrupt task numbers: 0 to 255). Cycle interrupt tasks,
however, are different from normal cyclic tasks in that they are started with
TKON(820), i.e., they cannot be started automatically at startup.

If an extra cyclic task has the same number as a scheduled, input, or high-
speed counter interrupt task, the interrupt task will be executed for either con-
dition (the two conditions will operate with OR logic). Do not use interrupt
tasks both as normal interrupt tasks and as extra cyclic tasks.

(1) Also, TKON(820) and TKOF(821) cannot be used in extra cyclic tasks,
meaning that normal cyclic tasks and other extra cyclic tasks cannot be
controlled from within an extra cyclic task.

(2) The differences between normal cyclic tasks and extra cyclic tasks are
listed in the following table.

Iltem Extra cyclic tasks Normal cyclic tasks

Activating at startup | Not supported. Supported. (Set from CX-
Programmer.)

Using TKON(820) Not supported. Supported.

and TKOF(821)

inside task

Task Flags Not supported. Supported. (Cyclic task
numbers 00 to 31 corre-
spond to Task Flags TKOO to
TK31.)

55

Programming with Tasks

Section 2-1

Item

Extra cyclic tasks

Normal cyclic tasks

Initial Task Execution
Flag (A200.15) and
Task Start Flag
(A200.14)

Index (IR) and data
(DR) register values

Not supported. Supported.

Not defined when task is
started (same as normal
interrupt tasks). Values at
the beginning of each
cycle are undefined.
Always set values before
using them. Values set in
the previous cycle cannot

Undefined at the beginning
of operation. Values set in
the previous cycle can be
read.

be read.

2-1-5 Task Execution Conditions and Settings

The following table describes task execution conditions, related settings, and

status.
Task No. Execution condition Related Setting

Cyclic tasks Oto 31 Executed once each cycle if READY |None

(set to start initially or started with the

TKON(820)instruction) when the right

to execute is obtained.
Interrupt | Scheduled Interrupt task 2 | Executed once every time the preset |« The scheduled interrupt time is set
tasks interrupt task 0 period elapses according to the inter- | (0 to 9999) through the SET INTER-

nal timer of CPU Unit.

RUPT MASK instruction
(MSKS(690)).

« Scheduled interrupt unit (10 ms, 1.0
ms, or 0.1 ms) is set in PLC Setup.

Input interrupt

Interrupt tasks

Executed when the corresponding

« Masks for designated inputs are

tasksOto 7 140 to 147 CPU Unit built-in input turns ON or canceled through the SET INTER-
turns OFF. RUPT MASK instruction
(MSKS(690)).
High-speed Interrupt tasks | Executed when corresponding target
counter inter- |0 to 255 or range comparison condition is met
rupt tasks for CPU Unit built-in high-speed

counter.

External inter-
rupt tasks
(CP1H only)

Interrupt tasks
0to 255

Executed when requested by a user
program in a Special 1/0 Unit or CPU
Bus Unit.

None (always enabled)

Extra cyclic tasks 0 to 255

Interrupt tasks
0to 255

Executed once each cycle if READY
(started with the TKON(820) instruc-
tion) when the right to execute is
obtained.

None (always enabled)

2-1-6 Cyclic Task Status

This section describes cyclic task status, including extra cyclic tasks.

Cyclic tasks always have one of four statuses: Disabled, READY, RUN (exe-
cutable), and standby (WAIT).

Disabled Status (INI)

READY Status

56

A task with Disabled status is not executed. All cyclic tasks have Disabled sta-

tus in PROGRAM mode. Any cycle task that shifted from this to another status
cannot return to this status without returning to PROGRAM mode.

A task attribute can be set to control when the task will go to READY status.
The attribute can be set to either activate the task using the TASK ON instruc-
tion or when RUN operation is started.

Programming with Tasks

Section 2-1

Instruction-activated
Tasks

Operation-activated Tasks

Note

RUN Status

Standby Status

Note

A TASK ON instruction (TKON(820)) is used to switch an instruction-activated
cyclic task from Disabled status or Standby status to READY status.

An operation-activated cyclic task will switch from Disabled status to READY
status when the operating mode is changed from PROGRAM to RUN or
MONITOR mode. This applies only to normal cyclic tasks.

The CX-Programmer can be used to set one or more tasks to go to READY
status when operation is started for task numbers 0 through 31. The setting,
however, is not possible with extra cyclic tasks.

A cyclic task that is READY will switch to RUN status and be executed when
the task obtains the right to execute.

A TASK OFF (TKOF(821)) instruction can be used to change a cyclic task
from Disabled status to Standby status.

The task programs for CP-series PLCs can be monitored online from the CX-
Programmer to see if they are executing or stopped. The status indications on
the CX-Programmer are as follows:

* Running: The task is in READY or RUN status. (There is no way to tell the
difference between these.)

» Stopped: The task is in INI or WAIT status. (There is no way to tell the dif-
ference between these.)

2-1-7 Status Transitions

Activated at the start of
operation (See note 1.) or the

. . Right t t tai .
TKON(820) instruction ight to execute obtained

INI (Disabled) status

READY status RUN status

Executed

TKON(820) instruction TKOF(821) instruction (See note 2.)

Note

Standby status

(1) Activation at the start of operation is possible for normal cyclic tasks only.
It is not possible for extra cyclic tasks.

(2) Atask in RUN status will be put into Standby status by the TKOF(821) in-
struction even when the TKOF(821) instruction is executed within that
task.

Standby status functions exactly the same way as a jump (JMP-JME). Output
status for the Standby task will be maintained.

A A
* JMP
_ B
B Standby status = Jump
..,,---.-———,I‘-_m....,._.-.——. JME <
C
C

57

Us ng Tasks

Section 2-2

2-2

Conventional program

Instructions will not be executed in Standby status, so instruction execution
time will not be increased. Programming that does not need to be executed all
the time can be made into tasks and assigned Standby status to reduce cycle
time.

Reduced cycle time

Task

A
A
v L 4
_{ Executes under All instructi il
‘ set conditions Instructons wi B
be executed un- >
B less jumps or other
functions are used.
C

f{ ‘-——-v Executes under

set conditions

D

vy

Note

Using Tasks

Standby status simply means that a task will be skipped during task execu-
tion. Changing to Standby status will not end the program.

2-2-1 TASK ON and TASK OFF

58

The TASK ON (TKON(820)) and TASK OFF (TKOF(821)) instructions switch a
cyclic task (including extra cyclic tasks) between READY and Standby status
from a program.

TKON N: Task No. A task will go to READY status when the
execution condition is ON, and the corre-
N sponding Task Flag will turn ON.
] TKOF N: Task No. A task will go to Standby status when
the execution condition is ON, and the
N corresponding Task Flag will turn OFF.

The TASK ON and TASK OFF instructions can be used to change any cyclic
task (including extra cyclic tasks) between READY and Standby status at any
time.

A cyclic task that is in READY status will maintain that status in subsequent
cycles, and a cyclic task that is in Standby status will maintain that status in
subsequent cycles.

The TASK ON and TASK OFF instructions can be used only within cyclic
tasks and not within interrupt tasks.

Us ng Tasks Section 2-2

Note At least one cyclic task must be in READY status in each cycle. If there is not
cyclic task in READY status, the Task Error Flag (A295.12) will turn ON, and
the CPU Unit will stop running.

Example: Cyclic Task ;

Cyclic task 0
A (READY status

—‘ .TKON 1)— at the start of
! operation)
-
I TKON 2 }_

Cyclic task 1
(0]
_l TKON 3 I
ID TKOF © Cyclic task 2
I
Cyclic task 3
1) Task O will be J 2) Task 1 will got it
in READY ask 1 will go to :)
status at the Cyclic task 0 READY status if A is |Cyclic task 0 3) 'gask d%W'” g0 to_f b
start of opera- ON, and tasks 2 and : %”N y status |
tion. * 3 will remain on - is ON.
Disabled status.
i - Cyclic task 1 Cyclic task 1 . .. |Cyclictask 1
noqg}ﬁri;agli(ssamgée g vel Other tasks will remain in
status. - ¥ their current status. -
Cyclic task 2 Cyclic task 2 Cyclic task 2
¥ o T
Cyclic task 3 Cyclic task 3 Cyclic task 3
D READY status
[:l Standby status/Disabled status
Tasks and the A cyclic task (including an extra cyclic task) that is in READY status will main-
Execution Cycle tain that status in subsequent cycles.

e
READY sta.,

; tus at the ;
Cyclic task 1 start of "p/ Cyclic task 1 READY status
TKON(820) eraﬁ"o
»/.'
Cyclic task 2 -READY Cyclic task 2 READY status

= status
v '

59

Us ng Tasks

Section 2-2

TKOF(821)

Cyclic Task Numbers
and the Execution
Cycle (Including Extra
Cyclic Tasks)

Relationship of Tasks
to I/0 Memory

60

A cyclic task that is in Standby status will maintain that status in subsequent
cycles. The task will have to be activated using the TKON(820) instruction in
order to switch from Standby to READY status.

5

¥

v

-
Standby
Cyclic task 1 Standby P Cyclic task 1 status
status
TKON o
(820) >) Y \ 4
Cyclic task 2 UN status | Cyclic task 2 | RUN status
{7

If a TKOF(821) instruction is executed for the task it is in, the task will stop
being executed where the instruction is executed, and the task will shift to
Standby status.

Task 2

{ } TKOF 2 |

> Task execution will
stop here and the task
will shift to Standby
status.

If task m turns ON task n and m > n, task n will go to READY status the next

cycle.

Example: If task 5 turns ON task 2, task 2 will go to READY status the next
cycle.

If task m turns ON task n and m < n, task n will go to READY status the same

cycle.

Example: If task 2 turns ON task 5, task 5 will go to READY status in the
same cycle.

If task m places task n in Standby status and m > n, will go to Standby status

the next cycle.

Example: If task 5 places task 2 in Standby status, task 2 will go to Standby
status the next cycle.

If task m places task n in Standby status and m < n, task n will go to Standby

status in the same cycle.

Example: If task 2 places task 5 in Standby status, task 5 will go to Standby
status in the same cycle.

There are two different ways to use Index Registers (IR) and Data Registers
(DR): 1) Independently by task or 2) Shared by all task.

With independent registers, IR0 used by cyclic task 1 for example is different
from IR0 used by cyclic task 2. With shared registers, IR0 used by cyclic task
1 for example is the same as IR0 used by cyclic task 2.

The setting that determines if registers are independent or shared is made
from the CX-Programmer.

Us ng Tasks Section 2-2

 Other words and bits in I/O Memory are shared by all tasks. CIO 10.00 for
example is the same bit for both cyclic task 1 and cyclic task 2. Therefore,
be very careful in programming any time 1/O memory areas other than the
IR and DR Areas are used because values changed with one task will be
used by other tasks.

1/0 memory Relationship to tasks

CIO, Auxiliary, Data Memory and all other Shared with other tasks.
memory areas except the IR and DR Areas.

Index registers (IR) and data registers (DR) | Used separately for each task.
(See note.)

Note IR and DR values are not set when interrupt tasks (including extra
cyclic tasks) are started. If IR and DR are used in an interrupt task,
these values must be set by the MOVR/MOVRW (MOVE TO REG-
ISTER and MOVE TIMER/COUNTER PV TO REGISTER) instruc-
tions within the interrupt task. After the interrupt task has been
executed, IR and DR will return to their values prior to the interrupt
automatically.

Relationship of Tasks to Timer present values for TIM, TIMX, TIMH, TIMHX, TMHH, TMHHX, TIMW,

Timer Operation TIMWX, TMHW, and TMHWX programmed for timer numbers TO00O to
T0015 will be updated even if the task is switched or if the task containing the
timer is changed to Standby status or back to READY status.

If the task containing TIM goes to Standby status and is the returned to
READY status, the Completion Flag will be turned ON if the TIM instruction is
executed when the present value is 0. (Completion Flags for timers are
updated only when the instruction is executed.) If the TIM instruction is exe-
cuted when the present value is not yet 0, the present value will continue to be
updated just as it was while the task was in READY status.

» The present values for timers programmed with timer numbers T0016 to
T4095 will be maintained when the task is in Standby status.

Relationship of Tasks to All Condition Flags will be cleared before execution of each task. Therefore

Condition Flags Condition Flag status at the end of task 1 cannot be read in task 2. CCS(282)
and CCL(283) can be used to read Condition Flag status from another part of
the program, e.g., from another task.

2-2-2 Task Instruction Limitations
Instructions Required The following instructions must be placed within the same task. Any attempt

in the Same Task to split instructions between two tasks will cause the ER Flag to turn ON and
the instructions will not be executed.

Mnemonic Instruction
JMP/IME JUMP/JUMP END
CJP/IME CONDITIONAL JUMP/JUMP END
CJPN/IME CONDITIONAL JUMP NOT/CONDITIONAL JUMP END
JMPO/JMEOQO MULTIPLE JUMP/JUMP END
FOR/NEXT FOR/NEXT
IL/ILC INTERLOCK/INTERLOCK CLEAR
SBS/SBN/RET SUBROUTINE CALL/SUBROUTINE ENTRY/SUBROUTINE
RETURN
MCRO/SBN/RET MACRO/SUBROUTINE ENTRY/SUBROUTINE RETURN
BPRG/BEND BLOCK PROGRAM BEGIN/BLOCK PROGRAM END
STEP /SNXT STEP DEFINE

61

Us ng Tasks

Section 2-2

Instructions Not
Allowed in Interrupt
Tasks

The following instructions cannot be placed in interrupt tasks. Any attempt to
execute one of these instructions in an interrupt task will cause the ER Flag to
turn ON and the instruction will not be executed.The following instructions can
be used if an interrupt task is being used as an extra task.

Mnemonic Instruction
TKON(820) TASK ON
TKOF(821) TASK OFF
STEP STEP DEFINE
SNXT STEP NEXT
STUP CHANGE SERIAL PORT SETUP
DI DISABLE INTERRUPT
El ENABLE INTERRUPT

The operation of the following instructions is unpredictable in an interrupt task:
TIMER: TIM and TIMX(550), HIGH-SPEED TIMER: TIMH(015) and
TIMHX(551), ONE-MS TIMER: TMHH(540) and TMHHX(552), ACCUMULA-
TIVE TIMER: TTIM(087) and TTIMX(555), MULTIPLE OUTPUT TIMER:
MTIM(543) and MTIMX(554), LONG TIMER: TIML(542) and TIMLX(553),
TIMER WAIT: TIMW(813) and TIMWX(816), HIGH-SPEED TIMER WAIT:
TMHW(815) and TMHWX(817), PID CONTROL: PID(190), FAILURE POINT
DETECTION: FPD(269), and CHANGE SERIAL PORT SETUP: STUP(237).

2-2-3 Flags Related to Tasks

Flags Related to
Cyclic Tasks

Task Flags
(TKOO to TK31)

The following flag work only for normal cyclic tasks. They do not work for extra
cyclic tasks.

A Task Flag is turned ON when a cyclic task in READY status and is turned
OFF when the task is in Disabled (INI) or in Standby (WAIT) status. Task num-
bers 00 to 31 correspond to Task Flags TKOO to TK31.

Task 3 #—— Cycle i< Cycle >e— T - Cycle —

Disabled

READY READY Standby

Task Flag for task 3

Note

Initial Task Execution Flag
(A200.15)

62

Task Flags are used only with cyclic tasks and not with interrupt tasks. With
an interrupt task, A441.15 will turn ON if an interrupt task executes after the
start of operation, and the number of the interrupt task that required for maxi-
mum processing time will be stored in two-digit hexadecimal in A441.00 to
A441.07.

The Initial Task Execution Flag will turn ON when cyclic tasks shift from Dis-
abled (INI) to READY status, the tasks obtain the right to execute, and the
tasks are executed the first time. It will turn OFF when the first execution of the
tasks has been completed.

Ready Ready
Disabled | I Disabled | |
Task n
Initial Task |_|
Execution Flag

Us ng Tasks Section 2-2

The Initial Task Execution Flag tells whether or not the cyclic tasks are being
executed for the first time. This flag can thus be used to perform initialization
processing within the tasks.

Initial Task Execution Flag

A200.15

__I I Initializing
processing

%_/—/

Note Even though a Standby cyclic task is shifted back to READY status through
the TKON(820) instruction, this is not considered an initial execution and the
Initial Task Execution Flag (A200.15) will not turn ON. The Initial Task Execu-
tion Flag (A200.15) will also not turn ON if a cyclic task is shifted from Dis-
abled to RUN status or if it is put in Standby status by another task through the
TKOF(821) instruction before the right to execute actually is obtained.

Task Start Flag (A200.14) The Task Start Flag can be used to perform initialization processing each time
the task cycle is started. The Task Start Flag turns OF whenever cycle task
status changes from Disabled (INI) or Standby (WAIT) status to READY status
(whereas the Initial Task Execution Flag turns ON only when status changes
from Disabled (INI) to READY).

Ready Ready

Taskn Disabled | I Disabled | I
Task Start Flag |—| |_|

The Task Start Flag can be used to perform initialization processing whenever
a task goes from Standby to RUN status, i.e., when a task on Standby is
enabled using the TRON(820) instruction.

Task Start Flag

A200.14

{ Initialization
processing

\//

Flags Related to All Tasks

Task Error Flag (A295.12) The Task Error Flag will turn ON if one of the following task errors occurs.
» No cyclic tasks (including extra cyclic tasks) are READY during a cycle.

» The program allocated to a cyclic task (including extra cyclic tasks) does
not exist. (This situation will not occur when using the CX-Programmer.)

* No program is allocated to an activated interrupt task.

63

Us ng Tasks

Section 2-2

Task Number when
Program Stopped (A294)

The type of task and the current task number when a task stops execution
due to a program error will be stored as follows:

Type

A294

Cyclic task

0000 to 001F hex (correspond to task numbers 0 to 31)

Interrupt task

8000 to 80FF hex (correspond to interrupt task numbers 0 to 255)

This information makes it easier to determine where the fatal error occurred,
and it will be cleared when the fatal error is cleared. The program address
where task operation stopped is stored in A298 (rightmost bits of the program
address) and in A299 (leftmost bits of the program address).

Us ng Tasks Section 2-2

2-2-4 Examples of Tasks

An overall control task that is set to go to READY status at the start of opera-
tion is generally used to control READY/Standby status for all other cyclic
tasks (including extra cyclic tasks). Of course, any cyclic task can control the
READY/Standby status of any other cyclic task as required by the application.

A
From Program Mode to Operating or Monitor Mode / TKON 1 —
|
Cyclic task 0 with the startup at B
the start of operation attribute TKON 2 -
(overall control task)
| Cc
TKON 3 _—
1A —l— B P c
D
TKOF 1 —
Cyclic task 1 Cyclic task 2 Cyclic task 3
E
—‘ TKOF 2
Tasks Separated by Function Tasks Separated by Controlled Section
> A-section control
¥ Conveyor task task
o — Overall control task
Overall control task P ! Error monitoring -
task B-section control
task
» MMI task -
C-section control
task
» Communications
“[task
»| Analog processing
task
Tasks Separated by Product Tasks Separated by Developer
Product A task Developer A task
Overall control task
I |
Product B task toa\éﬁra control 1Ly Developer B task
Product C task I_, Developer C task

Tasks Separated by Process

Machining task

Overall control task

Assembly task

» Conveyor task

Combinations of the above classifications are also possible, e.g., classifica-
tion by function and process.

65

Us ng Tasks

Section 2-2

2-2-5 Designing Tasks

66

—

Order priority

External I/O

We recommend the following guidelines for designing tasks.

1,2,3... 1. Use the following standards to study separating tasks.
a. Summarize specific conditions for execution and non-execution.
b. Summarize the presence or absence of external I/O.
c. Summarize functions.
Keep data exchanged between tasks for sequence control, analog
control, man-machine interfacing, error processing and other process-
es to an absolute minimum in order to maintain a high degree of au-
tonomy.
d. Summarize execution in order of priority.
Separate processing into cyclic and interrupt tasks.
Breakdown by function
/
Interrupt /
| s :
Overall Error processin 5
Input control P 9 I [re——— %
proces- (may in- [Sequence control] Output]
sing ¥ clude error processmg‘—;‘—g
processing | Analog control | g
»in some | S
L
cases) |Man—machine interfacingl

2. Be sure to break down and design programs in a manner that will ensure

autonomy and keep the amount of data exchanged between tasks (pro-
grams) to an absolute minimum.

| Minimize data Lu

1l exchange

—O |,
T

Generally, use an overall control task to control the READY/Standby status
of the other tasks.

Allocate the lowest numbers to tasks with the highest priority.

Example: Allocate a lower number to the control task than to processing
tasks.

Allocate lower numbers to high-priority interrupt tasks.

A task in READY status will be executed in subsequent cycles as long as
the task itself or another task does not shift it to Standby status. Be sure to
insert a TKOF(821) (TASK OFF) instruction for other tasks if processing is
to be branched between tasks.

Use the Initial Task Execution Flag (A200.15) or the Task Start Flag
(A200.14) in the execution condition to execution instructions to initialize
tasks. The Initial Task Execution Flag will be ON during the first execution
of each task. The Task Start Flag each time a task enters READY status.

v

Using Tasks Section 2-2
8. Assign I/O memory into memory shared by tasks and memory used only
for individual tasks, and then group I/O memory used only for individual
tasks by task.
Relationship of Tasks to Up to 128 block programs can be created in the tasks. This is the total number

Block Programs

for all tasks. The execution of each entire block program is controlled from the
ladder diagram, but the instructions within the block program are written using
mnemonics. In other words, a block program is formed from a combination of
a ladder instruction and mnemonic code.

Using a block program makes it easier to write logic flow, such as conditional
branching and process stepping, which can be hard to write using ladder dia-
grams. Block programs are located at the bottom of the program hierarchy,
and the larger program units represented by the task can be split into small
program units as block programs that operate with the same execution condi-
tion (ON condition).

2670

Program // 0.00

000
Block program 000 — | B;c::sG L
Block 001 i |~ Block program area 000

ock program

Block program n

0.01 —

— | BPRG | _
001

| — Block program area 001

67

I nterrupt Tasks

Section 2-3

2-2-6 Global Subroutine

A subroutine in one task cannot be called from other tasks. A subroutine
called a global subroutine can be created in interrupt task number 0, and this
subroutine can be called from cyclic tasks (including extra cyclic tasks).

GSBS(750) is used to call a global subroutine. The subroutine number must
be between 0 and 255. The global subroutine is defined at the end of interrupt
task number O (just before END(001)) between GSBN(751) and GRET(752)

2-3

instructions.

Global subroutines can be used to create a library of standard program sec-
tions that can be called whenever necessary.

Cyclic task (including
extra cyclic task)

A==

Call

Interrupt task 0

GSBN
n

n=0to 1,023

Multiple tasks

/ B

Cyclic task (including
extra cyclic task)

Exe-
cution
Return y

Global subroutine
(shared subroutine
used for standard

ml

Interrupt Tasks

2-3-1 Types of Interrupt Tasks

List of Interrupt Tasks

| call_

n <

Return

\f

GRET

END

P

programming)

Type Task Execution condition Setting procedure Number of Application
No. interrupts examples
CP1H 140 to | Aninterrupt occurs when | Use the SET INTER- 8 points Increasing
Input | X/IXA: 0to 7 147 an interrupt input built RUPT MASK instruction response speed to
Inter- [cp1H 140 to |into the CPU Unitturns | MSKS(690) to specify 6 points specific inputs
rupts |y- g to 5 145 ON or OFF in Direct which interrupt inputs
Mode or when a speci- are enabled. -
CP1L 14010 | fied number of ON or 6 points
M, or L (20 I/O): | 145 OFF signals is detected
0tos at the interrupt input in
CP1L 140 to | Counter Mode. 4 points
L (141/0): 0to 3| 143
High-speed counter Oto An interrupt occurs when | Use the COMPARISON | 256 points | Performing posi-
interrupts 255 a condition is met fora | TABLE LOADinstruction tioning operations
target value or range (CTBL(882)) to specify based on counting
comparison for the the execution condition encoder pulses
present value of a high- |and the interrupt to exe-
speed counter. cute.

68

| nterrupt Tasks Section 2-3

Type Task Execution condition Setting procedure Number of Application
No. interrupts examples
Scheduled Interrupt 0 |2 An interrupt occurs ata | Use the SET INTER- 1 point Monitoring operat-
scheduled time (fixed RUPT MASK instruction ing status at fixed
intervals). (MSKS(690)) to set the intervals

interrupt interval. See
Scheduled interrupt
interval in PLC Setup.

External Interrupts Oto Interrupts are requested | None (always valid) 256 points | Performing pro-
(Not supported by 255 by an Special I/O Unit or cessing required
CP1L CPU Units.) CPU Bus Unit. by CJ-series Spe-
cial I/0O Units
Input Interrupt Tasks Input interrupt tasks are disabled by default when cyclic task execution is

started. To enable input interrupts, execute the SET INTERRUPT MASK
instruction (MSKS(690)) in a cyclic task for the interrupt number.

Using inputs as interrupt inputs must be enabled in advance in the PLC Setup.
Note Do not enable unneeded input interrupt tasks. If the interrupt input is triggered

by noise and there isn't a corresponding interrupt task, a fatal error (task
error) will cause the program to stop.

Example: The following example shows execution input interrupt task 143
when CIO 0.03 (interrupt input No. 3) turns ON.

Cyclic task MSKS(690) enables the specified
input interrupt (ON, Direct Mode).

ﬁ MSKS |
Input interrupt 3

113

#0000 |¢_| (ON/OFF designation) l CIO 0.03

™~ ON designation
Input interrupt 3 com| 01 [03 | 05
(interruptdesignati(_)n) 0 | o2 oal o6
Interrupts enabled in
Direct Mode.

MSKS —
103
#0000

 E— END —

/l\—/

Cyclic task Interrupt
%‘
I =
Input interrupt task 143
END]
O
{ END
|
I

* CP1H X and XA CPU Units

Interrupt | Inputinterrupt | Interrupt
input number task number
CIO 0.00 0 140
ClO 0.01 1 141
ClO 0.02 2 142

69

I nterrupt Tasks

70

Interrupt | Inputinterrupt | Interrupt
input number task number
ClO 0.03 3 143
CIO 1.00 4 144
Cl01.01 5 145
CIO 1.02 6 146
CIO 1.03 7 147
* CP1H Y CPU Units
Interrupt | Inputinterrupt | Interrupt
input number task number
CIO 0.00 0 140
Cl0 0.01 1 141
CIO 1.00 2 142
Cl0 1.01 3 143
CIO 1.02 4 144
ClO 1.03 5 145

* CP1L M and L (20 I/O-point) CPU Units

Interrupt | Inputinterrupt | Interrupt
input number task number
CIO 0.04 0 140
CIO 0.05 1 141
CIO 0.06 2 142
CIO 0.07 3 143
CIO 0.08 4 144
CIO 0.09 5 145

CP1L L (14 l/O-point) CPU Units

Interrupt | Inputinterrupt | Interrupt
input number task number
CIO 0.04 0 140
CIO 0.05 1 141
CIO 0.06 2 142
CIO 0.07 3 143

Section 2-3

I nterrupt Tasks

Section 2-3

High-speed Counter
Interrupt Tasks:
Tasks 0 to 255

Cyclic task

High-speed counter interrupt tasks are enabled by executing the COMPARI-
SON TABLE LOADiInstruction (CTBL(882)) to specify the execution condition
and the interrupt to execute. The comparison condition consists of target val-
ues or a comparison range.

Example

The following example illustrates executing high-speed interrupt task 10 when
the present value of high-speed counter 0 equals the target value when the
present value is incremented.

}7 -

High-speed counter 0

Register comparison table and
start comparison.
~First word in comparison table

/\/ D1
D2

po [ooo1 | One target value
2710]Target value: 0000 2710 hex (10,000)

0000
p3 [Toooa | Compare when incrementing (bit 15: ON),
Interrupt task: 10 (OA hex)

END

|
I

Scheduled Interrupt
Task: Task 2

1,2,3...

Note

Cyclic task Talrget Target value for high-speed counter 0
value Ly
] comparison el 0lolol2[7[1]0]

High-speed counter 0
High-speed counter 0 decrement input

started with
CTBL(2). _ comparison

reset input JTUUUUL
CP1H
LT T T T T T T] [comloifosTos]o7]09]
PV of high-speed counter 0 [00[0204 06]08]
High-speed counter 0
A4 increment input

Match

High-speed Counter interrupt task 10

—
H——O-

END

Scheduled interrupt tasks are disabled in the default PLC Setup at the start of
cyclic task execution. Perform the following steps to enable scheduled inter-
rupt tasks.

1. Execute the SET INTERRUPT MASK instruction MSKS(690) from a cyclic
task and set the time (cycle) for the specified scheduled interrupt.

2. Set the Scheduled interrupt interval in PLC Setup.

The interrupt time setting affects the cyclic task in that the shorter the interrupt
time, the more frequently the task executes and the longer the cycle time.

Example: The following examples shows executed scheduled interrupt task
every second.

71

I nterrupt Tasks

Section 2-3

Cyclic task

Scheduled interrupt O (Interrupt No.

}_u_

MSKS

14

&100

Cyclic task

14: Reset start)
Interrupt internal: 100 x 10 ms

| Scheduled interrupt time unit in PLC
Setup =10 ms (0.01 s)

Every second

< Interrupt

Scheduled interrupt (Interrupt task 2)

1

PLC Setup Settings

External Interrupt
Tasks: Tasks 0 to 255

Note

Interrupt Task Priority and
Order of Execution

72

Scheduled Interrupt Numbers and Interrupt Task Number

Scheduled
interrupt number

0 2

interrupt task

Set the Scheduled interrupt interval on the Timings Tab Page of the PLC
Setup to 0.1, 1.0, or 10 ms.

Name Settings
Scheduled interrupt interval 10 ms (default)
1.0 ms
0.1 ms

External interrupt tasks can be received at any time. External interrupt pro-
cessing is performed at the CPU Unit in PLCs containing CJ-series Special
I/0 Units or CPU Bus Units. Settings don’t have to be made in the CPU Unit.
The specified interrupt task must be programmed in the CPU Unit.

If an external interrupt task (0 to 255) has the same number as the scheduled
interrupt task (task), an input interrupt task (140 to 147), or a high-speed
counter task (0 to 255), the interrupt task will be executed for either interrupt
condition (external interrupt or the other interrupt condition). As a rule, task
numbers should not be duplicated.

All interrupt tasks have the same priority, i.e., once execution of any interrupt
task has started, it will be completed through the end of the task even if
another interrupt occurs during execution. For example, execution of an input
interrupt task will not be interrupted to execute the scheduled interrupt task,
i.e., the scheduled interrupt task will be executed only after completing the
input interrupt task.

I nterrupt Tasks

Section 2-3

2-3-2

Maximum Interrupt
Task Processing Time

(A440)

Interrupt Task with
Maximum Processing
Time (A441)

Interrupt Task Error
Flag (Nonfatal Error)

(A402.13)

Interrupt Task Error
Flag (A426.15)/Task

Number Generating
the Interrupt Task
Error (A426.00 to

A426.11)

Task Number when
Program Stopped

(A294)

If more than one interrupt occurs at the same time, the interrupt tasks will be
executed in the following order: Input interrupt tasks (Direct Mode or Counter
Mode), High-speed interrupt tasks, External interrupt tasks, Scheduled inter-
rupt task.

If more than one of the same type of interrupt occurs at the same time, the
one with the lower task number will be executed first.

Keep in mind that the above order of execution means that time may be
required to execute a programmed task even after an interrupt has occurred if
the user program allows the possibility of more than one interrupt occurring at
the same time. For example, the user must give special consideration to the
scheduled interrupt, which may not be executed at the expected time if other
interrupts occur.

Interrupt Task Flags and Words

The maximum processing time for an interrupt task is stored in binary data in
0.1-ms units and is cleared at the start of operation.

The interrupt task number with maximum processing time is stored in binary
data. Here, 8000 to 80FF hex correspond to task numbers 00 to FF hex.

A441.15 will turn ON when the first interrupt occurs after the start of opera-
tion. The maximum processing time for subsequent interrupt tasks will be
stored in the rightmost two digits in hexadecimal and will be cleared at the
start of operation.

If Interrupt Task Error Detection is turned ON in the PLC Setup, the Interrupt
Task Error Flag will turn ON if an interrupt task error occurs.

If A402.13 turns ON, then the following data will be stored in A426.15 and
A426.00 to A426.11.

Interrupt Task Error
Detection is turned ON
in the PLC Setup)

1/O for a large number
of words using
IORF(097) from an
interrupt task while a
CJ-series Special I/O
Unit is being refreshed
by cyclic I/0 refreshing.

A402.13 Interrupt Task Error | A426.15| A426.00 to A426.11
Description
Interrupt Task Error (If | When trying to refresh | ON The unit number of the

CJ-series Special I/0
Unit being refreshed
will be stored in 12 bits
of binary data (unit
number 0 to 95: 000 to
O5F hex).

The type of task and the current task number when a program stops due to a
program error will be stored in the following locations.

Type A294
Interrupt task 8000 to 80FF hex (corresponds to interrupt task 0 to 255)
Cyclic task 0000 to 001F hex (corresponds to task 0 to 31)

73

I nterrupt Tasks

Section 2-3

2-3-3 Application Precautions

Executing IORF(

097)

for a Special 1/0 Unit

PLC Setup Settings

Related Auxiliary Area Flags/Words

If an IORF(097) instruction has to be executed from an interrupt task for a CJ-
series Special I/O Unit, be sure to turn OFF cyclic refresh for the Special 1/10
Unit (using the unit number) in the PLC Setup.

A interrupt task error will occur if you try to refresh a Special I/O Unit with an
IORF(097) instruction from an interrupt task while the Unit is also being
refreshed by cyclic I/O refresh or by 1/O refresh instructions (IORF(097) or
immediate refresh instructions (!)). If Interrupt Task Error Detection is turned
ON in the PLC Setup when an interrupt task error occurs, A402.13 (Interrupt
Task Error Flag) will turn ON and the unit number of the Special I/O Unit for
which /O refreshing has been duplicated will be stored in A426 (Interrupt
Task Error, Task Number). The CPU Unit will continue running.

CJ-series Special I/O Unit >< O

7 Incorrect Use Correct Use

CP1H
1/0 refresh

N NI > Do not executed Disable cyclic refresh-
IORF(097) in an interrupt ing for Special I/O Units
task if cyclic refreshing is in the PLC Setup before
enabled for Special I/0 executing the

Interrupt task Units in the PLC Setup. IORF(097) instruction in

an interrupt task.

IORF
D1
D2

Select or clear the Detect Interrupt Task Error Checkbox in the Execute Pro-
cess Area on the Settings Tab Page in the PLC Setup.

Name Setting Description
Detect Interrupt Task | Cleared Interrupt task errors not detected.
Error Selected Interrupt Task Error Flag (A402.13) turned
ON when an interrupt task error is detected.

Name

Address Description

Interrupt Task Error
Flag

A402.13

Turns ON if you try to refresh a CJ-series Special /0 Unit with IORF(097)
from an interrupt task while that Unit is being refreshed by cyclic I/O refresh.

Interrupt Task Error
Unit Number

Interrupt Task Error
Factor Flag

A426

Bits 00 to | The unit number of the Special I/O Unit undergoing duplicate refreshing will
11 be stored here when A402.13 turns ON.

Bit 15 Turns ON to indicate the cause of the error when A402.13 turns ON.

Disabling Interrupts

74

With a CP-series CPU Unit, the following processing will be interrupted to exe-
cute an interrupt task.

* |nstruction execution

* Refreshing for CPU Unit built-in 1/0, CPM1A Expansion Units, CPM1A
Expansion I/0 Units, or CJ-series Special I/O Units

* Peripheral servicing

CX-Programmer Operations for Tasks Section 2-4

Data Concurrency
between Cyclic and
Interrupt Tasks

Data may not be concurrent if a cyclic (including extra cyclic tasks) and an
interrupt task are reading and writing the same 1/0 memory addresses. Use
the following procedure to disable interrupts during memory access by cyclic
task instructions.

» Immediately prior to reading or writing by a cyclic task instruction, use a
DISABLE INTERRUPT (DI(693)) instruction to disable execution of inter-
rupt tasks.

» Use an ENABLE INTERRUPT instruction (EI(694)) immediately after pro-
cessing in order to enable interrupt task execution.

Cyclic task

Disabled

(—+ Interrupt task

Reading and writing 1/0
memory common to
interrupt tasks.

j—{ =

Processing with interrupt task
execution enabled

- T

Problems may occur with data concurrency even if DI(693) and EI(694) are
used to disable interrupt tasks during execution of an instruction that requires
response reception and processing (such as a network instruction or serial
communications instruction).

Enabled
€stmem——— |nterrupt task

2-4 CX-Programmer Operations for Tasks

CX-Programmer

Note

1,2,3...

Use the CX-Programmer to create cyclic tasks (including extra cyclic tasks).
Be sure to use the CX-Programmer to allocate the task types and task num-
bers.

Specify the task type and number as attributes for each program.

1. Select View/Properties, or click the right button and select Properties
from the popup menu, to display the program that will be allocated a task.

2. Click the General Tab, and select the Task Type and Task No. For a cyclic
task, select the Operation start Option to start the task at startup if re-
quired.

Program Properties

ﬂ General lODmments]

Mame:

Task type: |O'y'c|ic Task 00 (Startup) j

[w Operation start

75

CX-Programmer Operations for Tasks Section 2-4

76

SECTION 3
| nstructions

This section describes each of the instructions that can be used in programming CP-series PLCs. Instructions are described
in order of function.

3-1 Notation and Layout of Instruction Descriptions. 86
3-2 Sequence Input INSLIUCLIONSot 89
32-1 LOAD:LD .. 89
3-22 LOADNOT:LDNOT ..o e 91
3-2-3 AND: AND. ... e 93
3-2-4 ANDNOT:ANDNOT. ...t 95
325 ORIOR. ... 97
326 ORNOT:ORNOT . ..ottt i 93
3-2-7 ANDLOAD:ANDLD.o e 100
3-228 ORLOAD:ORLD.o e 102
3-2-9 Differentiated and Immediate Refreshing Instructions. 105
3-2-10 Operation Timing for I/O Instructions 106
32-11 TRBIS. ..o 107
3-2-12 NOT:NOT(520) . . . vt ettt e e e e e 108
3-2-13 CONDITION ON/OFF: UP(521) and DOWN(522) 109
3-2-14 BITTEST: TST(350) and TSTN(351) oo v vveie e 110
3-3 Sequence Output INStrUCtioNS.ot e 113
331 OUTPUT: OUT ..t e 113
332 OUTPUTNOT:OUTNOT ...t 114
3-33 KEEP:KEEP(OLL) ..ottt e 115
3-3-4 DIFFERENTIATE UP/DOWN: DIFU(013) and DIFD(014). 119
335 SETandRESET: SETandRSET...............ccciiiinn.... 122
3-3-6 MULTIPLE BIT SET/RESET: SETA(530)/RSTA(531) 124
3-3-7 SINGLEBIT SET/RESET: SETB(532)/RSTB(533). 127
3-3-8 SINGLEBITOUTPUT:OUTB(B34)coviiieen 130
3-4 Sequence Control INStruCtionst i 132
341 END:END(OOL)........ovineneiie i 132
3-4-2 NOOPERATION: NOP(00Q). . . . oo evvee e e e e ee e 133
3-4-3 Overview of Interlock Instructions. 133
3-4-4 INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003) . 136

3-4-5 MULTI-INTERLOCK DIFFERENTIATION HOLD,
MULTI-INTERLOCK DIFFERENTIATION RELEASE, and
MULTI-INTERLOCK CLEAR: MILH(517), MILR(518), and

VIR G T 140
3-4-6 JUMP and JUMP END: JMP(004) and IME(005). 154
3-4-7 CONDITIONAL JUMP: CIP(510)/CIPN(511)o 157
3-4-8 MULTIPLE JUMP and JUMP END: JMPO(515) and JMEO(516) . 161
3-4-9 FOR-NEXT LOOPS: FOR(512)/NEXT(513) . ..o .. 163
3-4-10 BREAK LOOP: BREAK(514). . ..o 166

77

78

35

3-6

3-7

3-8

Timer and Counter INSrUCtions.
351 TIMER: TIM/TIMX(550) .. .vviiieiii et
3-5-2 HIGH-SPEED TIMER: TIMH(015)/TIMHX(551)
3-5-3 ONE-MSTIMER: TMHH(540)/TMHHX(552).
3-5-4 ACCUMULATIVETIMER: TTIM(087)/TTIMX(555)
3-55 LONG TIMER: TIML(542)/TIMLX(553).o
3-5-6 MULTI-OUTPUT TIMER: MTIM(543)/MTIMX(554)
3-5-7 COUNTER: CNT/CNTX(546). . .. oo et
3-5-8 REVERSIBLE COUNTER: CNTR(012)/CNTRX(548)
3-59 RESET TIMER/COUNTER: CNR(545)/CNRX(547).
3-5-10 Example Timer and Counter Applications.
3-5-11 Indirect Addressing of Timer/Counter Numbers
Comparison INStrUCtioNS.o o
3-6-1 Input Comparison Instructions (300t0328).
3-6-2 Time Comparison Instructions (341t0346).
3-6-:3 COMPARE:CMP(020) ...ttt
3-6-4 DOUBLECOMPARE: CMPL(060)covvivvunnnnnn.
3-6-5 SIGNED BINARY COMPARE: CPS(114)t
3-6-6 DOUBLE SIGNED BINARY COMPARE: CPSL(115)
3-6-7 MULTIPLE COMPARE: MCMP(019)ccnnn...
3-6-8 TABLECOMPARE: TCMP(085)ovviiieiiannnnnn
3-6-9 BLOCK COMPARE: BCMP(068)..........ovvviiiiiaann..
3-6-10 EXPANDED BLOCK COMPARE: BCMP2(502).
3-6-11 AREA RANGE COMPARE: ZCP(088).cvviinnn...
3-6-12 DOUBLE AREA RANGE COMPARE: ZCPL(116)............
Data Movement INStructions.t
37-1 MOVE:MOV(021). . ..ottt e
3-7-2 MOVENOT:MVN(022)t e
3-7-3 DOUBLEMOVE:MOVL(498)......cciviiiiiiiiiaann
3-7-4 DOUBLEMOVENOT:MVNL(499)coviiiiiiinn.
37-5 MOVEBIT:MOVB(082).\ovtitit e
3-7-6 MOVEDIGIT:-MOVD(083)citiiiiieeiiiiaaaann.
3-7-7 MULTIPLE BIT TRANSFER: XFRB(062)...................
3-7-8 BLOCK TRANSFER: XFER(O70)covviinnnannnnn
37-9 BLOCK SET:BSET(071) .ot oveeeeee e ee e
3-7-10 DATA EXCHANGE: XCHG(073)t oei it
3-7-11 DOUBLE DATA EXCHANGE: XCGL(562)
3-7-12 SINGLE WORD DISTRIBUTE: DIST(080).« .vveeaeann ..
3-7-13 DATA COLLECT: COLL(08L)\vveeiiie i
3-7-14 MOVETOREGISTER: MOVR(560)covviiiiiiaaent
3-7-15 MOVE TIMER/COUNTER PV TO REGISTER: MOVRW(561). .
Data Shift InStructionst e
38-1 SHIFTREGISTER: SFT(010)\ voveeeee e eeeeaeeens
3-8-2 REVERSIBLE SHIFT REGISTER: SFTR(084)
3-8-3 ASYNCHRONOUS SHIFT REGISTER: ASFT(017).

168
170
174
178
181
184
187
193
196
200
203
206
209
209
215
220
222
225
227
230
233
235
238
242
244
247
247
248
250
251
253
255
257
260
262
264
265
267
269
270
272
274
274
276
279

3-10

3-8-4

3-8-5

3-8-6

3-8-7

3-8-8

3-8-9

3-8-10
3-8-11
3-8-12
3-8-13
3-8-14
3-8-15
3-8-16
3-8-17
3-8-18
3-8-19
3-8-20
3-8-21
3-8-22
3-8-23
3-8-24

WORD SHIFT: WSFT(016). . . .« e eeeee e
ARITHMETIC SHIFT LEFT: ASL(025). oo
DOUBLE SHIFT LEFT: ASLL(570). .+« e e eeeeeeea .
ARITHMETIC SHIFT RIGHT: ASR(026) oo
DOUBLE SHIFT RIGHT: ASRL(571) + ..o eveeeeeeean
ROTATE LEFT: ROL(027). . .o ee et e
DOUBLE ROTATE LEFT: ROLL(572) . .+ oo eeeeeeee .
ROTATE RIGHT: ROR(028)ot e e
DOUBLE ROTATE RIGHT: RORL(573) . . e oeeeean .
ROTATE LEFT WITHOUT CARRY: RLNC(574)
DOUBLE ROTATE LEFT WITHOUT CARRY: RLNL(576).
ROTATE RIGHT WITHOUT CARRY: RRNC(575).
DOUBLE ROTATE RIGHT WITHOUT CARRY: RRNL(577)
ONE DIGIT SHIFT LEFT: SLD(O74)o oo
ONE DIGIT SHIFT RIGHT: SRD(O75). . .« ..o eeeeeeennn
SHIFT N-BIT DATA LEFT: NSFL(578)o oeveeeeeenn
SHIFT N-BIT DATA RIGHT: NSFR(579). . ..« oo
SHIFT N-BITSLEFT: NASL(580) vvveeeeeaaan s
DOUBLE SHIFT N-BITSLEFT: NSLL(582).vven...
SHIFT N-BITSRIGHT: NASR(581).o oeeeeeeeenn s
DOUBLE SHIFT N-BITSRIGHT: NSRL(583)\

Increment/Decrement INStructions oo i i e

3-9-1
3-9-2
3-9-3
3-9-4
3-9-5
3-9-6
3-9-7
3-9-8

INCREMENT BINARY: ++(590)ot
DOUBLE INCREMENT BINARY: ++L(591)
DECREMENT BINARY: =—(592).\ o e
DOUBLE DECREMENT BINARY: ——L(593).
INCREMENT BCD: ++B(594)o e
DOUBLE INCREMENT BCD: ++BL(595)evvvvvnn. ..
DECREMENT BCD: —=—B(596) vvveeeeeaannnns.
DOUBLE DECREMENT BCD: ——BL(597). eevvvnnn. ..

Symbol Math Instructions. i

3-10-1
3-10-2
3-10-3
3-10-4
3-10-5
3-10-6
3-10-7
3-10-8
3-10-9

SIGNED BINARY ADD WITHOUT CARRY: +(400)..........
DOUBLE SIGNED BINARY ADD WITHOUT CARRY: +L(401)
SIGNED BINARY ADD WITH CARRY: +C(402).............
DOUBLE SIGNED BINARY ADD WITH CARRY: +CL(403). ..
BCD ADD WITHOUT CARRY: +B(404).t
DOUBLE BCD ADD WITHOUT CARRY: +BL(405)..........
BCD ADD WITH CARRY: +BC(406)ccovvvrn...
DOUBLE BCD ADD WITH CARRY: +BCL(407).
SIGNED BINARY SUBTRACT WITHOUT CARRY: —(410)

3-10-10 DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY:

L (A1) e e

3-10-11 SIGNED BINARY SUBTRACT WITH CARRY: -C(412).......
3-10-12 DOUBLE SIGNED BINARY SUBTRACT WITH CARRY:

281
283
284
286
287
289
290
292
294
295
297
299
300
302
303
305
307
309
311
314
317
320
320
322
324
326
328
330
332
334
336
337
339
341

345
346
348
349
351

353
357

359
361

79

80

311

312

3-10-14 DOUBLE BCD SUBTRACT WITHOUT

CARRY: -BL(415)

3-10-15 BCD SUBTRACT WITH CARRY: -BC(416).
3-10-16 DOUBLE BCD SUBTRACT WITH CARRY: -BCL(417).......

3-10-17 SIGNED BINARY MULTIPLY: *(420). .

3-10-18 DOUBLE SIGNED BINARY MULTIPLY: *L(421)............
3-10-19 UNSIGNED BINARY MULTIPLY: *U(422)
3-10-20 DOUBLE UNSIGNED BINARY MULTIPLY: *UL(423).

3-10-21 BCD MULTIPLY: *B(424).
3-10-22 DOUBLE BCD MULTIPLY: *BL(425). .
3-10-23 SIGNED BINARY DIVIDE: /(430).

3-10-24 DOUBLE SIGNED BINARY DIVIDE: /L(431)covven ..

3-10-25 UNSIGNED BINARY DIVIDE: /U(432)

3-10-26 DOUBLE UNSIGNED BINARY DIVIDE: /JUL(433)...........

3-10-27 BCDDIVIDE: /IB(434).
3-10-28 DOUBLE BCD DIVIDE: /BL(435).
Conversion Instructions.
3-11-1 BCD-TO-BINARY: BIN(023)

3-11-2 DOUBLE BCD-TO-DOUBLE BINARY: BINL(058)...........

3-11-3 BINARY-TO-BCD: BCD(024).

3-11-4 DOUBLE BINARY-TO-DOUBLE BCD: BCDL(059)

3-11-5 2’SCOMPLEMENT: NEG(160).......

3-11-6 DOUBLE 2’SCOMPLEMENT: NEGL(161)
3-11-7 16-BIT TO 32-BIT SIGNED BINARY: SIGN(600)

3-11-8 DATA DECODER: MLPX(076)
3-11-9 DATA ENCODER: DMPX(077)
3-11-10 ASCII CONVERT: ASC(086)
3-11-11 ASCII TOHEX: HEX(162)
3-11-12 COLUMN TO LINE: LINE(063).
3-11-13 LINE TO COLUMN: COLM(064)
3-11-14 SIGNED BCD-TO-BINARY: BINS(470)

3-11-15 DOUBLE SIGNED BCD-TO-BINARY: BISL(472)

3-11-16 SIGNED BINARY-TO-BCD: BCDS(471)

3-11-17 DOUBLE SIGNED BINARY-TO-BCD: BDSL(473)

3-11-18 GRAY CODE CONVERT: GRY (474). ..
Logiclnstructions.t
3-12-1 LOGICAL AND: ANDW(034)
3-12-2 DOUBLE LOGICAL AND: ANDL(610)

3-12-3 LOGICAL OR: ORW(035)
3-12-4 DOUBLE LOGICAL OR: ORWL(611). .
3-12-5 EXCLUSIVE OR: XORW(036).
3-12-6 DOUBLE EXCLUSIVE OR: XORL(612)
3-12-7 EXCLUSIVE NOR: XNRW(037)

3-12-8 DOUBLE EXCLUSIVENOR: XNRL(613)c....

3-12-9 COMPLEMENT: COM(029)..........
3-12-10 DOUBLE COMPLEMENT: COML (614)

363
366
367
369
371
372
374
375
377
378
380
382
384
385
387
389
389
390
392
393
395
397
398
400

408
411
415
417
419
422
424
427
430
436
436
437
439
440
442

445
447
449
450

3-13

314

3-15

Special Math Instructions.
3-13-1 BINARY ROOT: ROTB(620).
3-13-2 BCD SQUARE ROOT: ROOT(072)

3-13-3 ARITHMETIC PROCESS: APR(069).o
3-13-4 FLOATING POINT DIVIDE: FDIV(079)o oo oo

3-13-5 BIT COUNTER: BCNT(067).
Floating-point Math Instructions
3-14-1 FLOATING TO 16-BIT: FIX(450).
3-14-2 FLOATING TO 32-BIT: FIXL(451)
3-14-3 16-BIT TO FLOATING: FLT(452)

3-14-4 32-BIT TOFLOATING: FLTL(453) ... ot

3-14-5 FLOATING-POINT ADD: +F(454)

3-14-6 FLOATING-POINT SUBTRACT: =F(455) oo
3-14-7 FLOATING-POINT MULTIPLY: *F(456).ccovevnn. ..
3-14-8 FLOATING-POINT DIVIDE: /[F(457). . . oo
3-14-9 DEGREESTORADIANS:RAD(458)ccoivviinnnn..
3-14-10 RADIANSTODEGREES: DEG(459)ccovviininn..

3-14-11 SINE: SIN(460)ovoeen..
3-14-12 COSINE: COS(461)
3-14-13 TANGENT: TAN(462)
3-14-14 ARC SINE: ASIN(463)
3-14-15 ARC COSINE: ACOS(464)
3-14-16 ARC TANGENT: ATAN(465)
3-14-17 SQUARE ROOT: SQRT(466)
3-14-18 EXPONENT: EXP(467).
3-14-19 LOGARITHM: LOG(468)

3-14-20 EXPONENTIAL POWER: PWR(840)ovvnvn..
3-14-21 Single-precision Floating-point Comparison Instructions.
3-14-22 FLOATING-POINT TOASCII: FSTR(448)cooveenn
3-14-23 ASCII TO FLOATING-POINT: FVAL(449)

Double-precision Floating-point Instructions

3-15-1 DOUBLEFLOATING TO 16-BIT: FIXD(84L)................
3-15-2 DOUBLEFLOATING TO 32-BIT: FIXLD(842)
3-15-3 16-BIT TO DOUBLE FLOATING: DBL(843)
3-15-4 32-BIT TODOUBLE FLOATING: DBLL(844)
3-15-5 DOUBLE FLOATING-POINT ADD: +D(845)................
3-15-6 DOUBLE FLOATING-POINT SUBTRACT: -D(846)
3-15-7 DOUBLE FLOATING-POINT MULTIPLY: *D(847)...........

3-15-8 DOUBLE FLOATING-POINT DIV
3-159 DOUBLE DEGREES TO RADIAN
3-15-10 DOUBLE RADIANS TO DEGREE

IDE: /D(848).\ ...
S:RADD(849)
S: DEGD(850)

3-15-11 DOUBLE SINE: SIND(851) ovi i

3-15-12 DOUBLE COSINE: COSD(852) . .
3-15-13 DOUBLE TANGENT: TAND(853)
3-15-14 DOUBLE ARC SINE: ASIND(854)

451
451
453
456
467
470
472
478
480
481
483
484
486
488
490
492
493
495
496
498
500
502
503
505
507
509
511
512
516
521
525
530
532
533
534
536
538
540
542
544
545
547
548
550
551

81

82

3-16

317

3-18

3-15-15 DOUBLE ARC COSINE: ACOSD(855)
3-15-16 DOUBLE ARC TANGENT: ATAND(856)
3-15-17 DOUBLE SQUARE ROQT: SQRTD(857)
3-15-18 DOUBLE EXPONENT: EXPD(858)
3-15-19 DOUBLE LOGARITHM: LOGD(859)
3-15-20 DOUBLE EXPONENTIAL POWER: PWRD(860)
3-15-21 Double-precision Floating-point Input Instructions
Table Data Processing I nstructions
SET STACK: SSET(630)ovvevieennn
PUSH ONTO STACK: PUSH(632)
FIRST IN FIRST OUT: FIFO(633)
LAST IN FIRST OUT: LIFO(634)

3-16-1
3-16-2
3-16-3
3-16-4
3-16-5
3-16-6
3-16-7
3-16-8
3-16-9

DIMENSION RECORD TABLE: DIM(631).
SET RECORD LOCATION: SETR(635)
GET RECORD NUMBER: GETR(636)
DATA SEARCH: SRCH(181)

SWAPBYTES: SWAP(637). oeeveeeen

3-16-10 FIND MAXIMUM: MAX(182)
3-16-11 FIND MINIMUM: MIN(183)
3-16-12 SUM:SUM(184)
3-16-13 FRAME CHECKSUM: FCS(180)

3-16-14 STACK SIZE READ: SNUM(638)

3-16-15 STACK DATA READ: SREAD(639)...........

3-16-16 STACK DATA OVERWRITE: SWRIT(640)
3-16-17 STACK DATA INSERT: SINS(641)
3-16-18 STACK DATA DELETE: SDEL (642)
Data Contral Instructions
PID CONTROL: PID(190).covvviannt

3-17-1
3-17-2
3-17-3
3-17-4
3-17-5
3-17-6
3-17-7
3-17-8
3-17-9

3-18-1
3-18-2
3-18-3
3-18-4
3-18-5
3-18-6
3-18-7

PID CONTROL WITH AUTOTUNING: PIDAT(192)

LIMIT CONTROL: LMT(680)
DEAD BAND CONTROL: BAND(681)
DEAD ZONE CONTROL: ZONE(682)
TIME-PROPORTIONAL OUTPUT: TPO(685) ..
SCALING:SCL(194)........ccoviiiiean.
SCALING2:SCL2(486)ccvvvvennnn.
SCALING3:SCL3(487)veiiiieeaann
3-17-10 AVERAGE: AVG(195)
Subroutines
SUBROUTINE CALL: SBS(091)
MACRO: MCRO(099)ccoviiee.
SUBROUTINE ENTRY: SBN(092)............
SUBROUTINE RETURN: RET(093)
GLOBAL SUBROUTINE CALL: GSBS(750) . . .
GLOBAL SUBROUTINE ENTRY: GSBN(751). .

GLOBAL SUBROUTINE RETURN: GRET(752)

553
555
557
558
560
562
563
567
567
570
573
575
578
580
582
584
586
588
591
504
597
600
603
606
609
612
615
615
627
637
639
642
644
652
656
660
664
668
668
674
678
680
681
688
691

3-19 Interrupt Control Instructions.

3-20

321

3-22

3-23

3-24

3-19-1
3-19-2
3-19-3
3-19-4
3-19-5

SET INTERRUPT MASK: MSKS(690)

READ INTERRUPT MASK: MSKR(692)

CLEAR INTERRUPT: CLI(691).....
DISABLE INTERRUPTS: DI(693) . . .
ENABLE INTERRUPTS: EI(694). . ..

High-speed Counter/Pulse Output Instructions. .

3-20-1
3-20-2
3-20-3
3-20-4
3-20-5
3-20-6
3-20-7
3-20-8
3-20-9

MODE CONTROL: INI(880)

HIGH-SPEED COUNTER PV READ: PRV(881)..............

COUNTER FREQUENCY CONVERT:

PRV2(883)............

REGISTER COMPARISON TABLE: CTBL(882)

SPEED OUTPUT: SPED(885).
SET PULSES: PULS(886).
PULSE OUTPUT: PLS2(887)

ACCELERATION CONTROL: ACC(888)ccvvuun..

ORIGIN SEARCH: ORG(889)

3-20-10 PULSE WITH VARIABLE DUTY FACTOR: PWM(891).......
StepInstructions. L.
3-21-1 STEP DEFINE and STEP START: STEP(008)/SNXT(009)......
Basic I/0O Unit Instructions.

3-22-1
3-22-2
3-22-3
3-22-4
3-22-5
3-22-6
3-22-7
3-22-8
3-22-9

1/O REFRESH: IORF(097).
7-SEGMENT DECODER: SDEC(078)

DIGITAL SWITCH INPUT —=DSW(210)o eeeee et

TEN KEY INPUT - TKY(211)
HEXADECIMAL KEY INPUT —HKY
MATRIX INPUT: MTR(213)........

@)

7-SEGMENT DISPLAY OUTPUT —7SEG(214)
INTELLIGENT I/OREAD: IORD(222)cvviiennn

INTELLIGENT I/O WRITE: IOWR(22

3) e

3-22-10 CPU BUSUNIT I/O REFRESH: DLNK(226)
Seriadl Communications Instructions.

3231
3-23-2
3-23-3
3-23-4
3-23-5

3-23-6
3-23-7

3-24-1
3-24-2
3-24-3
3-24-4
3-24-5

Serial Communications.
PROTOCOL MACRO: PMCR(260) ..
TRANSMIT: TXD(236)............
RECEIVE: RXD(235)

TRANSMIT VIA SERIAL COMMUNI
TXDU(256). . . .o eeeeeeeeeeann .

RECEIVE VIA SERIAL COMMUNICATIONS UNIT: RXDU(255)

CATIONSUNIT:

CHANGE SERIAL PORT SETUP: STUP(237)
Network Instructions.

About Network Instructions.

About Explicit Message Instructions (CPIH Only)

NETWORK SEND: SEND(090)
NETWORK RECEIVE: RECV(098). .
DELIVER COMMAND: CMND(490)

692
692
696
699
702
703
705
705
709
715
719
723
728
731
739
745
749
751
752
769
769
772
775
779
782
786
790
794
797
800
805
805
806
815
820

825
833
841

859
864
870
876

83

325

3-26

327

3-28

3-29

3-30

3-24-6
3-24-7
3-24-8
3-24-9

EXPLICIT MESSAGE SEND: EXPLT(720)ot
EXPLICIT GET ATTRIBUTE: EGATR(721)
EXPLICIT SET ATTRIBUTE: ESATR(722) o ...
EXPLICIT WORD READ: ECHRD(723) . ..o

3-24-10 EXPLICIT WORD WRITE: ECHWR(724)t
Display INStrUCLIONS.o

3-25-1
3-25-2
3-25-3

DISPLAY MESSAGE: MSG(046)o evoeeeeeeaenn .
SEVEN-SEGMENT LED WORD DATA DISPLAY: SCH(047). . .
SEVEN-SEGMENT LED CONTROL: SCTRL(048)

Clock INSLIUCHIONS . . . ottt e e e e e e e e e

3-26-1
3-26-2
3-26-3
3-26-4
3-26-5

CALENDAR ADD: CADD(730) . .+« e
CALENDAR SUBTRACT: CSUB(731) e
HOURS TO SECONDS: SEC(065)+« eeeeeeeaaann.
SECONDS TO HOURS: HMS(066)\
CLOCK ADJUSTMENT: DATE(735) . . .+ v

Debugging INStructionsot e

3-27-1

Trace Memory Sampling: TRSM(045)t

Failure DiagnosisINStructions.t e

3-28-1
3-28-2
3-28-3

FAILURE ALARM: FAL(006).ot
SEVERE FAILURE ALARM: FALS(007)cccvvun..
FAILURE POINT DETECTION: FPD(269)

Other INSITUCLIONS . . . oot e e e e

3-29-1
3-29-2
3-29-3
3-29-4
3-29-5
3-29-6
3-29-7

SET CARRY: STC(040) . . o oo e oo oo
CLEAR CARRY: CLC(041)o
EXTEND MAXIMUM CYCLE TIME; WDT(094)
SAVE CONDITION FLAGS: CCS(282)
LOAD CONDITION FLAGS: CCL(283).
CONVERT ADDRESS FROM CV: FRMCV(284)
CONVERT ADDRESSTO CV: TOCV(285).\

Block Programming Instructions.t

3-30-1
3-30-2
3-30-3
3-30-4
3-30-5
3-30-6
3-30-7
3-30-8
3-30-9

Introduction.
BLOCK PROGRAM BEGIN/END: BPRG(096)/BEND(801)
BLOCK PROGRAM PAUSE/RESTART: BPPS(811)/BPRS(812) .
Branching: 1F(802), ELSE(803), and IEND(804).
CONDITIONAL BLOCK EXIT (NOT): EXIT (NOT)(806)
ONE CYCLE AND WAIT (NQOT): WAIT(805)/WAIT(805) NOT. .
TIMER WAIT: TIMW(813) and TIMWX(816)
COUNTER WAIT: CNTW(814) and CNTWX(818)
HIGH-SPEED TIMER WAIT: TMHW/(815) and TMHWX(817) . .

3-30-10 Loop Control: LOOP(809)/LEND(810)/LEND(810) NOT
3-31 Text String Processing INStructions.

3-31-1
3-31-2
3-31-3
3-31-4

Text String Processing Overview,
MOV STRING: MOVE(664)oiveiiieii i
CONCATENATE STRING: +$(656)cvvvviiiiinnnnn..
GET STRING LEFT: LEFT$(652).covvviiiie

883
890
897
903
907
911
911
913
915
918
918
921
924
927
929
932
932
936
936
944
951
961
961
961
962
964
966
967
971
975
975
979
982
984
988
901
995
998
1001
1004
1008
1008
1009
1011
1013

3-33

3-31-5
3-31-6
3-31-7
3-31-8
3-31-9

3-31-13 INSERT INTO STRING: INS$(657)

GET STRING RIGHT: RGHT$(653)o eee e
GET STRING MIDDLE: MID$(654).o oeeeeeeeennn ..

FIND IN STRING: FIND$(660). . .
STRING LENGTH: LEN$(650). . .

REPLACE IN STRING: RPLC$(661) oeeeennn. ..
3-31-10 DELETE STRING: DEL$(658) . . .
3-31-11 EXCHANGE STRING: XCHG$(665)o eevveaeennnn ..
3-31-12 CLEAR STRING: CLR$(666)

3-31-14 String Comparison Instructions (670t0675)
3-32 Task Control Instructions.

3-32-1
3-32-2

TASK ON: TKON(820)
TASK OFF: TKOF(821)

Model Conversion Instructions...........

3-33-1
3-33-2
3-33-3
3-33-4
3-33-5
3-33-6

BLOCK TRANSFER: X FERC(565)

SINGLE WORD DISTRIBUTE: DISTC(566).

DATA COLLECT: COLLC(567) ..
MOVE BIT: MOVBC(568).
BIT COUNTER: BCNTC(621) ...
GET VARIABLE ID: GETID(286)

1016
1018
1020
1022
1024
1026
1029
1030
1032
1035
1040
1040
1043
1047
1049
1051
1054
1059
1061
1062

85

Notation and Layout of I nstruction Descriptions

Section 3-1

3-1

Notation and Layout of Instruction Descriptions

Instructions are described in groups by function. Refer to Appendix C Alpha-
betical List of Instructions by Mnemonic for a list of instructions by mnemonic
that lists the page number in this section for each instruction.

The description of each instruction is organized as described in the following
table.

Item

Contents

Name and Mnemonic

The heading of each section consists of the name of the instruction followed by the
mnemonic with the function code in parentheses. Example: MOVE BIT: MOVB(082)

Purpose

The basic purpose of the instruction is described after the section heading.

Ladder Symbol and Operand

Names

The ladder symbol used to represent the instruction on the CX-Programmer is
shown, as in the example for the MOVE BIT instruction given below. The name of
each operand is also provided with the ladder symbol.

MOVB(082)

S S: Source word or data

C C: Control word

D D: Destination word

Variations

Variations

The variations that can be used to control execution of the instruction under special
conditions are given using the mnemonic form. Any variation that is not supported by
an instruction is given as “Not supported.”

» Executed Each Cycle for ON Condition: The instruction is executed as long as it
receives an ON execution condition.

» Executed Once for Upward Differentiation: The instruction is executed during the
next cycle only after the execution condition changes from OFF to ON.

« Executed Once for Downward Differentiation: The instruction is executed during the
next cycle only after the execution condition changes from ON to OFF.

* Always Executed: The instruction does not require an execution condition and is
executed each cycle.

« Creates ON Condition....: The instruction is executed each cycle to create an execu-
tion condition for the next instruction.

Variations Executed Each Cycle for ON Condition | MOVB(082)

Variations

Variations

Executed Once for Upward Differentia-
tion

@MOVB(082)

Executed Once for Downward Differenti-
ation

Not supported

Immediate
Refreshing
Specification

Immediate refreshing can be specified for some instructions to refresh I/O when the
instruction is executed. If immediate refreshing is supported, the specification is
given using the mnemonic form. If immediate refreshing is not support by an instruc-
tion “Not supported” is given.

Immediate Refreshing Specification Not supported.

Applicable Program Areas

The program areas in which the instruction can be used are specified. “OK” indicates
the areas in which the instruction can be used.

Block program
areas

Step program
areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

86

Notation and Layout of I nstruction Descriptions

Section 3-1

Item

Contents

Operands

15

7 0

c | m

" |

L Destination bit: 00 to OF

(0 to 15 decimal)

Where necessary, the meaning of words and bits used in specific operands, such as
control words, is given.

Source bit: 00 to OF

(0 to 15 decimal)

Operand Specifications

The memory areas addresses that can be used each operand are listed in a table
like the following one. The letters used in the column headings on the left are the
same as those used in the ladder symbol. “---" is used to indicate when an area can-
not be specific for an operand.

Area S C D
CIO Area CIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959 A448 to A959
Timer Area T0OO000 to T4095

Counter Area

C0000 to C4095

DM Area DO to D32767
Description The function of the instruction and the operands used in the instruction are
described.
Flags The flags table indicates the status of the condition flags immediately after execution
of the instruction. Any flags that are not listed are not affected by the instruction.
“OFF” indicates that a flag is turned OFF immediately after execution of the instruc-
tion regardless of the results of executing the instruction.
Name Label Operation
Error Flag ER ON if control data is within ranges.
OFF in all other cases.
Equals Flag = OFF
Negative Flag N OFF
Precautions Special precautions required in using the instruction are provided. Be sure to read
and follow these precautions.
Example An example of using the instruction with specific operands is provided to further
explain the function of the instruction.
Constants Constants input for operands are given as listed below.

Operand Descriptions and Operand Specifications

» Operands Specifying Bit Strings (Normally Input as Hexadecimal):
Only the hexadecimal form is given for operands specifying bit strings,
e.g., only “#0000 to #FFFF” is specified as the S operand for the
MOV(021) instruction. On the CX-Programmer, however, bit strings can
be input in decimal form by using the & prefix.

» Operands Specifying Numeric Values (Normally Input as Decimal, Includ-
ing Jump Numbers):
Both the decimal and hexadecimal forms are given for operands specify-
ing numeric values, e.g., “#0000 to #FFFF” and “&0 to &65535” are given
for the N operand for the XFER(070) instruction.

87

Notation and Layout of I nstruction Descriptions

Section 3-1

Note

Condition Flags

Precautions for DM
Area Addresses in
CP1L L CPU Units

88

» Operands Indicating Control Numbers (Except for Jump Numbers):
The decimal form is given for control numbers, e.g., “0 to 1023” is given
for the N operand for the SBS(091) instruction.

Examples

In the examples, constants are given using the CX-Programmer notation, e.g.,
operands specifying numeric values are given in decimal for with an & prefix,
as shown in the following example.

|— XFER
&10

D100
D200

The input methods for constants for the CX-Programmer are given in the fol-
lowing table.

Operand
Operands specifying bit strings (normally
input as hexadecimal)

Operands specifying numeric values
(normally input as decimal)

CX-Programmer

Input as decimal with an & prefix or input
as hexadecimal with an # prefix. (See
note.)

Operands specifying control numbers
(except for jump numbers)

Input as decimal with an # prefix. (See
note.)

When operands are input on the CX-Programmer, the input ranges will be dis-
played along with the appropriate prefixes.

Flag names are used for condition flags in this section. With the CX-Program-
mer, the condition flags are registered in advance as global symbols.

Flag name CX-Programmer label
(Used in this section.)

Error Flag P_ER
Access Error Flag P_AER
Carry Flag P_CY
Greater Than Flag P_GT
Equals Flag P_EQ
Less Than Flag P_LT
Negative Flag P_N
Overflow Flag P_OF
Underflow Flag P_UF
Greater Than or Equals Flag P_GE
Not Equal Flag P_NE
Less Than or Equals Flag P_LE
Always ON Flag P_On
Always OFF Flag P_Off

The DM Area is smaller in the CP1L L CPU Units, in comparison to the other
CP-series CPU Units. The operand specifications listed in this Programming
Manual are for CP1H and CP1L M (30 or 40-1/O point) CPU Units, so the
entire listed DM Area address ranges may not be usable in the CP1L L (14 or
20 I/O point) CPU Units.

When programming with the CX-Programmer, out-of-range DM Area
addresses cannot be specified. In addition, if an invalid DM Area is set in the
program, an error will occur when the program is transferred to the PLC.

Sequence I nput | nstructions

Section 3-2

The following table shows example DM Area ranges in the CP1L L CPU Units.

CP1H and CP1L M CPU Units
DM Area D00000 to D32767

Indirect DM addresses in
binary

Indirect DM addresses in
BCD

@D00000 to @D32767

*D00000 to *D32767

—

CP1L L CPU Units

DM Area

D00000 to D09999,
D32000 to D32767

Indirect DM addresses in
binary

@DO00000 to @D09999,
@D30000 to @D32767

Indirect DM addresses in
BCD

*D00000 to *D09999,
*D30000 to *D32767

3-2 Sequence Input Instructions

3-2-1

Purpose

LOAD: LD

the ON/OFF status of the specified operand bit.

Ladder Symbol
Bus bar

|_

Indicates a logical start and creates an ON/OFF execution condition based on

Starting point of block

|_

Variations

Variations | Restarts Logic and Creates ON Each Cycle LD
Operand Bit is ON
Restarts Logic and Creates ON Once for @LD
Upward Differentiation
Restarts Logic and Creates ON Once for %LD
Downward Differentiation

Immediate Refreshing Specification ILD

Combined | Refreshes Input Bit, Restarts Logic, and l@LD

Variations | Creates ON Once for Upward Differentiation
Refreshes Input Bit, Restarts Logic, and 1%LD

Applicable Program Areas

Operand Specifications

Creates ON Once for Downward Differentiation

Block program areas

Step program areas Subroutines

Interrupt tasks

OK OK OK OK
Area LD operand bit

CIO Area ClO 0.00 to CIO 6143.15

Work Area WO0.00 to W511.15

Holding Bit Area

H0.00 to H511.15

Auxiliary Bit Area

A0.00 to A959.15

Timer Area

TOO0O0O to T4095

Counter Area

CO0000 to C4095

Task Flag Area

TKOO to TK31

Condition Flags

ER, CY, N, OF UF, >, =, <, >=, <>, <=, Al, AQ

Clock Pulses 0.02s,0.15,0.2s,15s,1min
TR Area TRO to TR15
DM Area

89

Sequence I nput | nstructions

Section 3-2

Description

Flags

Precautions

90

Area LD operand bit

Indirect DM addresses | ---
in binary

Indirect DM addresses | ---
in BCD

Constants

Data Registers

Index Registers

Indirect addressing ,IRO to ,IR15

using Index Registers | _>048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

, (= -)IR0 to, —(- -)IR15

LD is used for the first normally open bit from the bus bar or for the first nor-
mally open bit of a logic block. If there is no immediate refreshing specifica-
tion, the specified bit in 1/O memory is read. If there is an immediate
refreshing specification, the status of the Basic Input Unit's input terminal is
read and used.

LD is used in the following circumstances as an instruction for indicating a log-
ical start.

» When directly connecting to the bus bar.

* When logic blocks are connected by AND LD or OR LD, i.e., at the begin-
ning of a logic block.

The AND LOAD and OR LOAD instructions are used to connect in series or in
parallel logic blocks beginning with LD or LD NOT.

At least one LOAD or LOAD NOT instruction is required for the execution con-
dition when output-related instructions cannot be connected directly to the
bus bar. If there is no LOAD or LOAD NOT instruction, a programming error
will occur with the program check by the CX-Programmer.

When logic blocks are connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus 1. If they do not match, a pro-
gramming error will occur. For details, refer to 3-2-7 AND LOAD: AND LD and
3-2-8 OR LOAD: OR LD.

There are no flags affected by this instruction.

Differentiate up (@) or differentiate down (%) can be specified for LD. If differ-
entiate up (@) is specified, the execution condition is turned ON for one cycle
only after the status of the operand bit goes from OFF to ON. If differentiate
down (%) is specified, the execution condition is turned ON for one cycle only
after the status of the operand bit goes from ON to OFF.

Immediate refreshing (!) can be specified for LD. An immediate refresh
instruction updates the status of the input bit for CPU Unit built-in inputs just
before the instruction is executed.

For LD, it is possible to combine immediate refreshing and up or down differ-
entiation (!@ or '%). If either of these is specified, the built-in input is
refreshed from the CPU Unit just before the instruction is executed and the
execution condition is turned ON for one cycle only after the status goes from
OFF to ON, or from ON to OFF.

Sequence I nput | nstructions

Section 3-2

Example

OR LD

/LD /LD
‘| 000 001 100,00
A L o IR
002 ¢ 003
— ——|
004
|
\LD NOTO'O5
Instruction Operand
LD coo | =
LD oor || ORLD
LD 0.02
AND 0.03
OR LD ---
AND LD R
LD NOT 0.04 T
AND 0.05 J
OR LD ---
ouT 100.00

3-2-2 LOAD NOT: LD NOT

Indicates a logical start and creates an ON/OFF execution condition based on
the reverse of the ON/OFF status of the specified operand bit.

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Bus bar

Starting point of

block

Variations | Restarts Logic and Creates ON Each Cycle Operand | LD NOT
Bit is OFF

Restarts Logic and Creates ON Once for Upward
Differentiation

@LD NOT

Restarts Logic and Creates ON Once for Downward | %LD NOT
Differentiation

Immediate Refreshing Specification

ILD NOT

Combined | Refreshes Input Bit, Restarts Logic, and Creates ON |!@LD NOT
Variations | Once for Upward Differentiation

Refreshes Input Bit, Restarts Logic, and Creates ON |!%LD NOT
Once for Downward Differentiation

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

91

Sequence I nput | nstructions

Section 3-2

Operand Specifications

Area

LD NOT bit operand

CIO Area

ClO 0.00 to CIO 6143.15

Work Area

WO0.00 to W511.15

Holding Bit Area

H0.00 to H511.15

Auxiliary Bit Area

A0.00 to A959.15

Timer Area

TOO0O0O to T4095

Counter Area

C0000 to C4095

Task Flag Area

TKOO to TK31

Condition Flags

ER, CY, N, OF UF, >, =, <, >=, <>, <=, ON, OFF AER

Clock Pulses

0.02s,0.15,0.2s,15s,1min

TR Area

DM Area

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

,IRO to ,IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(=9)IR0 to, —(- -)IR15

Description

LD NOT is used for the first normally closed bit from the bus bar, or for the first

normally closed bit of a logic block. If there is no immediate refreshing specifi-
cation, the specified bit in I/O memory is read and reversed. If there is an
immediate refreshing specification, the status of the Basic Input Unit's input
terminal is read, reversed, and used.

LD NOT is used in the following circumstances as an instruction for indicating

a logical start.

» When directly connecting to the bus bar.

» When logic blocks are connected by AND LD or OR LD. (Used at the
beginning of a logic block.)

The AND LOAD and OR LOAD instructions are used to connect in series or in
parallel logic blocks beginning with LD or LD NOT.

At least one LOAD or LOAD NOT instruction is required for the execution con-
dition when output-related instructions cannot be connected directly to the
bus bar. If there is no LOAD or LOAD NOT instruction, a program error will
occur with the program check by the CX-Programmer.

When logic blocks are connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minusl. If they do not match, a program-

ming error will occur.
Flags

Precautions

There are no flags affected by this instruction.

Immediate refreshing (!) can be specified for LD NOT. An immediate refresh

instruction updates the status of the input bit for a CPU Unit built-in input just
before the instruction is executed.

92

Sequence I nput | nstructions Section 3-2
Example
LD /LD
{000 o001 | 100,00
o “___5 “ LD
HE %
© 002 ¢ 003
! il L 13
LA
004
' W 1
Lo 0.05
onor
Instruction Operand | |
"""" AND LD
LD 0.00 OR LD
LD 0.01
LD 0.02 ORLD
AND 0.03
ORLD —_— 1
AND LD — Y
LD NOT 0.04
AND 0.05
ORLD
ouT 100.00

3-2-3 AND: AND

Purpose

Ladder Symbol

Variations

Takes a logical AND of the status of the specified operand bit and the current
execution condition.

— b

Variations | Creates ON Each Cycle AND Result is ON AND
Creates ON Once for Upward Differentiation @AND
Creates ON Once for Downward Differentiation |%AND
Immediate Refreshing Specification IAND
Combined |Refreshes Input Bit and Creates ON Once for I@AND
Variations | Upward Differentiation
Refreshes Input Bit and Creates ON Once for 196AND
Downward Differentiation

Applicable Program Areas

Block program areas

Step program

areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

93

Sequence I nput | nstructions

Section 3-2

Operand Specifications

Area

AND bit operand

CIO Area

ClO 0.00 to CIO 6143.15

Work Area

WO0.00 to W511.15

Holding Bit Area

H0.00 to H511.15

Auxiliary Bit Area

A0.00 to A959.15

Timer Area

TOO0O0O to T4095

Counter Area

C0000 to C4095

Task Flag Area

TKOO to TK31

Condition Flags

ER, CY, N, OF UF, >, =, <, >=, <>, <=, ON, OFF AER

Clock Pulses

0.02s,0.15,0.2s,15s,1min

TR Area

DM Area

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

,IRO to ,IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(=9)IR0 to, —(- -)IR15

Description

AND is used for a normally open bit connected in series. AND cannot be

directly connected to the bus bar, and cannot be used at the beginning of a
logic block. If there is no immediate refreshing specification, the specified bit
in 1/0 memory is read. If there is an immediate refreshing specification, the
status of the CPU Unit’s input terminal is read.

Flags

Precautions

There are no flags affected by this instruction.

Differentiate up (@) or differentiate down (%) can be specified for AND. If dif-

ferentiate up (@) is specified, the execution condition is turned ON for one
cycle only after the status of the operand bit goes from OFF to ON. If differen-
tiate down (%) is specified, the execution condition is turned ON for one cycle
only after the status of the operand bit goes from ON to OFF.

Immediate refreshing (!) can be specified for AND. An immediate refresh
instruction updates the status of the input bit for CPU Unit built-in inputs just
before the instruction is executed.

For AND, it is possible to combine immediate refreshing and up or down differ-
entiation (!@ or '%). If either of these is specified, the input is refreshed from
the CPU Unit just before the instruction is executed and the execution condi-
tion is turned ON for one cycle only after the status goes from OFF to ON, or

from ON to OFF

94

Sequence I nput | nstructions

Section 3-2

Example

//AND / AND
000 | 001 | 002 | 003 ¢
it ————0)
op_ o
i L :
\ AND NOT
Instruction Operand
LD 0.00
AND 0.01
LD 0.02
AND 0.03
LD 0.04
AND NOT 0.05
OR LD
AND LD
ouT 100.00

3-2-4 AND NOT: AND NOT

Purpose

Ladder Symbol

Variations

Reverses the status of the specified operand bit and takes a logical AND with
the current execution condition.

-

Variations | Creates ON Each Cycle AND NOT Result is ON AND NOT
Creates ON Once for Upward Differentiation @AND NOT
Creates ON Once for Downward Differentiation %AND NOT
Immediate Refreshing Specification IAND NOT
Combined |Refreshes Input Bit and Creates ON Once for I@AND NOT
Variations | Upward Differentiation
Refreshes Input Bit and Creates ON Once for 19%6AND NOT
Downward Differentiation

Applicable Program Areas

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Operand Specifications

Area AND NOT bit operand
ClO Area Cl0 0.00 to CIO 6143.15
Work Area WO0.00 to W511.15

Holding Bit Area

HO0.00 to H511.15

Auxiliary Bit Area

A0.00 to A959.15

Timer Area

TOO00O0 to T4095

Counter Area

C0000 to C4095

Task Flag Area

TKOO to TK31

Condition Flags

ER, CY, N, OF UF, >, =, <, >=, <>, <=, ON, OFF AER

95

Sequence I nput | nstructions

Section 3-2

Description

Flags

Precautions

Example

96

Area
Clock Pulses
TR Area
DM Area

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants
Data Registers
Index Registers

Indirect addressing
using Index Registers

AND NOT bit operand
0.02s5,0.15,0.2s,15s,1min

,IRO to ,IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—~(=-)IRO to, —(- -)IR15

AND NOT is used for a normally closed bit connected in series. AND NOT
cannot be directly connected to the bus bar, and cannot be used at the begin-
ning of a logic block. If there is no immediate refreshing specification, the
specified bit in I/O memory is read. If there is an immediate refreshing specifi-
cation, the status the CPU Unit’s input terminals is read.

There are no flags affected by this instruction.

Immediate refreshing (!) can be specified for AND NOT. An immediate refresh
instruction updates the status of the input bit for CPU Unit built-in inputs just
before the instruction is executed.

- AND / AND
000 | 001 ; 002 | 003 i 100,00
1L ' H i "1 ' H ;
It L . L
004 005
1l E [y4 L
1 A :
N AND NOT
Instruction Operand
LD 0.00
AND 0.01
LD 0.02
AND 0.03
LD 0.04
AND NOT 0.05
OR LD ---
AND LD ---
ouT 100.00

Sequence I nput | nstructions

Section 3-2

3-2-5 OR:OR

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Takes a logical OR of the ON/OFF status of the specified operand bit and the
current execution condition.

Bus bar

HH 4

Variations | Creates ON Each Cycle OR Result is ON OR
Creates ON Once for Upward Differentiation @OR
Creates ON Once for Downward Differentiation %O0R
Immediate Refreshing Specification IOR
Combined |Refreshes Input Bit and Creates ON Once for I@0OR
Variations | Upward Differentiation
Refreshes Input Bit and Creates ON Once for 1%0R
Downward Differentiation

Block program areas

Step program areas Subroutines

Interrupt tasks

OK

OK OK OK

Area

OR bit operand

CIO Area

CIO 0.00 to CIO 6143.15

Work Area

WO0.00 to W511.15

Holding Bit Area

HO0.00 to H511.15

Auxiliary Bit Area

A0.00 to A959.15

Timer Area

TOO00O0 to T4095

Counter Area

C0000 to C4095

Task Flag Area

TKOO to TK31

Condition Flags

ER, CY, N, OF UF, >, =, <, >=, <>, <=, ON, OFF AER

Clock Pulses

0.02s5,0.1s5,0.2s,15s,1min

DM Area

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

IR0 to ,IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(= IR0 to, —(- -)IR15

97

Sequence I nput | nstructions Section 3-2

Description OR is used for a normally open bit connected in parallel. A normally open bit
is configured to form a logical OR with a logic block beginning with a LOAD or
LOAD NOT instruction (connected to the bus bar or at the beginning of the
logic block). If there is no immediate refreshing specification, the specified bit
in /0O memory is read. If there is an immediate refreshing specification, the
status of the CPU Unit’s input terminal is read.

Flags There are no flags affected by this instruction.

Precautions Differentiate up (@) or differentiate down (%) can be specified for OR. If differ-
entiate up (@) is specified, the execution condition is turned ON for one cycle
only after the status of the operand bit goes from OFF to ON. If differentiate
down (%) is specified, the execution condition is turned ON for one cycle only
after the status of the operand bit goes from ON to OFF.

Immediate refreshing (!) can be specified for OR. An immediate refresh
instruction updates the status of the input bit for a CPU Unit built-in input just
before the instruction is executed.

For OR, it is possible to combine immediate refreshing and up or down differ-
entiation (!@ or '%). If either of these is specified, the input is refreshed from
the CPU Unit just before the instruction is executed and the execution condi-
tion is turned ON for one cycle only after the status of the operand bit goes
from OFF to ON, or from ON to OFF.

Example
100.00
0.00 0.01 0.02 0.04 0.05 0.06
I il il it It it O
[} bl 1 | ¥ ¥ ih
oo T k | oo f
. —— L . 5
\ OR AN ORNOT
Instruction Operand
LD 0.00
AND 0.01
AND 0.02
OR 0.03
AND 0.04
LD 0.05
AND 0.06
OR NOT 0.07
AND LD
ouT 100.00
3-2-6 OR NOT: OR NOT
Purpose Reverses the status of the specified bit and takes a logical OR with the current

execution condition.

]

Ladder Symbol
Bus bar

98

Sequence I nput | nstructions

Section 3-2

Variations

Applicable Program Areas

Operand Specifications

Description

Flags

Precautions

Variations Creates ON Each Cycle OR NOT Result is ON OR NOT
Creates ON Once for Upward Differentiation @OR NOT
Creates ON Once for Downward Differentiation %O0OR NOT
Immediate Refreshing Specification IOR NOT
Combined |Refreshes Input Bit and Creates ON Once for I@OR NOT
Variations Upward Differentiation
Refreshes Input Bit and Creates ON Once for 190R NOT
Downward Differentiation

Block program areas

Step program areas | Subroutines | Interrupt tasks

OK

OK OK OK

Area

OR NOT bit operand

CIO Area

CIO 0.00 to CIO 6143.15

Work Area

W0.00 to W511.15

Holding Bit Area

HO0.00 to H511.15

Auxiliary Bit Area

A0.00 to A959.15

Timer Area

TOO00O to T4095

Counter Area

CO0000 to C4095

Task Flag Area

TKOO to TK31

Condition Flags

ER, CY, N, OF UF, >, =, <, >=, <>, <=, Al, A0

Clock Pulses

0.02s5,0.1s5,0.2s,15s,1min

TR Area

DM Area

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

JIRO to ,IR15

—2048 to +2047 IR0 to —2048 to +2047 IR15
DRO to DR15, IR0 to IR15

JRO+(++) to IR15+(++)

~(= -)IRO to, (- -)IR15

OR NOT is used for a normally closed bit connected in parallel. A normally
closed bit is configured to form a logical OR with a logic block beginning with a
LOAD or LOAD NOT instruction (connected to the bus bar or at the beginning
of the logic block). If there is no immediate refreshing specification, the speci-
fied bit in I/O memory is read. If there is an immediate refreshing specification,
the status of the CPU Unit’s input terminal is read.

There are no flags affected by this instruction.

Immediate refresh (!) can be specified for OR NOT. An immediate refresh
instruction updates the status of the input bit from a CPU Unit built-in input
just before the instruction is executed.

99

Sequence I nput | nstructions Section 3-2
Example
100.00
0.00 0.01 0.02 0.04 0.05 0.06
il il 1 i I i O
bE bl il ¥ 1F it
4 003 T k | ooz T f
L S o z
~ OR N ORNOT
Instruction Operand

LD 0.00

AND 0.01

AND 0.02

OR 0.03

AND 0.04

LD 0.05

AND 0.06

OR NOT 0.07

AND LD

ouT 100.00
3-2-7 AND LOAD: AND LD
Purpose Takes a logical AND between logic blocks.
Ladder Symbol

Logic block — Logic block

Variations

Variations Creates ON Each Cycle AND Result is ON AND LD

Immediate Refreshing Specification Not supported.

Applicable Program Areas

Description

100

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

AND LD connects in series the logic block just before this instruction with

another logic block.

LD

to Logic block A
LD N

to Logic block B
AND LD

------- Serial connection between logic block A and logic block B.

The logic block consists of all the instructions from a LOAD or LOAD NOT
instruction until just before the next LOAD or LOAD NOT instruction on the

same rungs.

Sequence I nput | nstructions

Section 3-2

Flags

Precautions

Example

In the following diagram, the two logic blocks are indicated by dotted lines.
Studying this example shows that an ON execution condition will be produced
when either of the execution conditions in the left logic block is ON (i.e., when
either CIO 0.00 or CIO 0.01 is ON) and either of the execution conditions in
the right logic block is ON (i.e., when either CIO 0.02 is ON or CIO 0.03 is
OFF).

{6 7o) 10
I !

O

There are no flags affected by this instruction.

Three or more logic blocks can be connected in series using this instruction to
first connect two of the logic blocks and then to connect the next and subse-
guent ones in order. It is also possible to continue placing this instruction after
three or more logic blocks and connect them together in series.

When a logic block is connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus 1. If they do not match, a program
error will occur.

0.00 0.02 0.04 100.00
Il [y 4 | | I

1 Al 1

0.01 0.03 | 0.05

1L |1 |

Al I |

Coding Example (1)

Instruction Operand

LD 0.00

OR NOT 0.01

LD NOT 0.02

OR 0.03

AND LD

LD 0.04

OR 0.05

AND LD

ouT 100.00

Coding Example (2)

Instruction Operand
LD 0.00
OR NOT 0.01
LD NOT 0.02
OR 0.03
LD 0.04
OR 0.05

101

Sequence I nput | nstructions

Section 3-2

Instruction

Operand

AND LD

AND LD

ouT

100.00

The AND LOAD instruction can be used repeatedly. In programming method
(2) above, however, the number of AND LOAD instructions becomes one less
than the number of LOAD and LOAD NOT instructions before that.

In method (2), make sure that the total number of LOAD and LOAD NOT
instructions before AND LOAD is not more than eight. To use nine or more,
program using method (1). If there are nine or more with method (2), then a
program error will occur during the program check by the CX-Programmer.

Coding
Address Instruction Operand

000000 LD 0.00

000001 OR 0.01

000002 LD 0.02

000003 OR NOT 0.03

000004 AND LD

000005 ouT 100.00

Second LD: Used for first bit of next block connected in series to previous

block.

3-2-8 OR LOAD: OR LD

Purpose

Ladder Symbol

Variations

Applicable Program Areas

102

Takes a logical OR between logic blocks.

Variations

Creates ON Each Cycle AND Result is ON

OR LD

Immediate Refreshing Specification

Not supported.

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Sequence I nput | nstructions Section 3-2

Description

Flags

Precautions

Example

AND LD connects in parallel the logic block just before this instruction with
another logic block.

LD
to Logic block A
LD M
to Logic block B
—
ORLD - Parallel connection between logic block A and logic block B.

The logic block consists of all the instructions from a LOAD or LOAD NOT
instruction until just before the next LOAD or LOAD NOT instruction on the
same rungs.

The following diagram requires an OR LOAD instruction between the top logic
block and the bottom logic block. An ON execution condition would be pro-
duced either when CIO 0.00 is ON and CIO 0.01 is OFF or when CIO 0.02
and CIO 0.03 are both ON. The operation of and mnemonic code for the OR
LOAD instruction is exactly the same as those for a AND LOAD instruction
except that the current execution condition is ORed with the last unused exe-
cution condition.

0.00 0.01 100.00
L
I

There are no flags affected by this instruction.

Three or more logic blocks can be connected in parallel using this instruction
to first connect two of the logic blocks and then to connect the next and subse-
guent ones in order. It is also possible to continue placing this instruction after
three or more logic blocks and connect them together in parallel.

When a logic block is connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus 1. If they do not match, a pro-
gramming error will occur.

0.00 0.01 100.00
|| jd
i PA
0.02 0.03
V4 I
Al Al
0.04 0.05
|| |1
Ll L]

Coding Example (1)

Instruction Operand
LD 0.00
AND NOT 0.01
LD NOT 0.02
AND NOT 0.03
OR LD ---

103

Sequence I nput | nstructions

Section 3-2

104

Instruction Operand
LD 0.04
AND 0.05
OR LD -
ouT 100.00
Coding Example (2)
Instruction Operand
LD 0.00
AND NOT 0.01
LD NOT 0.02
AND NOT 0.03
LD 0.04
AND 0.05
OR LD -
OR LD -
ouT 100.00

The OR LOAD instruction can be used repeatedly. In programming method
(2) above, however, the number of OR LOAD instructions becomes one less
than the number of LOAD and LOAD NOT instructions before that.

In method (2), make sure that the total number of LOAD and LOAD NOT
instructions before OR LOAD is not more than eight. To use nine or more, pro-
gram using method (1). If there are nine or more with method (2), then a pro-
gram error will occur during the program check by the CX-Programmer.

Coding
Address Instruction Operand

000100 LD 0.00

000101 AND NOT 0.01

000102 LD 0.02

000103 AND 0.03

000104 OR LD

000105 ouT 100.00

Second LD: Used for first bit of next block connected in series to previous

block.

Sequence I nput | nstructions Section 3-2

3-2-9 Differentiated and Immediate Refreshing Instructions

The LOAD, AND, and OR instructions have differentiated and immediate
refreshing variations in addition to their ordinary forms, and there are also two
combinations available.

The LOAD NOT, AND NOT, OR NOT, OUT, and OUT NOT instructions have
immediate refreshing variations in addition to their ordinary forms.

The 1/O timing for data handled by instructions differs for ordinary and differ-
entiated instructions, immediate refreshing instructions, and immediate
refreshing differentiated instructions.

Ordinary and differentiated instructions are executed using data input by pre-
vious 1/O refresh processing, and the results are output with the next 1/0O pro-
cessing. Here “I/O refreshing” means the data exchanged between the CPU’s
internal memory and CPU Unit built-in 1/0, CPM1A Expansion Units, and
CPM1A Expansion I/O Units.

In addition to the above I/O refreshing, an immediate refresh instruction
exchanges data with the 1/0O Unit for those words that are accessed by the
instruction. An immediate refresh instruction refreshes all of the bits in the

word containing the specified bit.

Instruction variation

Mnemonic

Function

1/0 refresh

Ordinary

LD, AND, OR, LD NOT,
AND NOT, OR NOT

The ON/OFF status of the specified bit
is taken by the CPU with cyclic refresh-
ing, and it is reflected in the next instruc-
tion execution.

OUT, OUT NOT

After the instruction is executed, the ON/
OFF status of the specified bit is output
with the next cyclic refreshing.

Differentiated up

@LD, @AND, @OR

The instruction is executed once when
the specified bit turns from OFF to ON
and the ON state is held for one cycle.

Differentiated down

%LD, %AND, %0OR

The instruction is executed once when
the specified bit turns from ON to OFF
and the ON state is held for one cycle.

Cyclic refreshing

Immediate refresh

ILD, !AND, !OR, ILD NOT,
IAND NOT, !OR NOT

The input data for the specified bit is
taken by the CPU and the instruction is
executed.

Before instruction execu-
tion

IOUT, IOUT NOT

After the instruction is executed, the
data for the specified bit is output.

After instruction execution

Differentiated up /
immediate refresh

I@LD, !@AND, !|@OR

The input data for the specified bit is
refreshed by the CPU, and the instruc-
tion is executed once when the bit turns
from OFF to ON and the ON state is
held for one cycle.

Differentiated down /
immediate refresh

1%LD, !%AND, !%0R

The input data for the specified bit is
refreshed by the CPU, and the instruc-
tion is executed once when the bit turns
from ON to OFF and the ON state is
held for one cycle.

Before instruction execu-
tion

Note Immediate refresh instructions (i.e., instructions with !) can be used only for
built-in I/O on the CPU Unit. They cannot be used for /O on CPM1A Expan-
sion Units or CPM1A Expansion I/O Units. Use IORF(097) for /O on CPM1A

Expansion Units or CPM1A Expansion I/O Units.

105

Section 3-2

The following chart shows the differences in the timing of instruction opera-

tions for a program configured from LD and OUT.

3-2-10 Operation Timing for I/O Instructions

Sequence I nput | nstructions

—-5 ||I|
(3]
>0
QO
c O
£ 2
_ el PR
[0
-
e TR B s TR SRR P o B e -
28t T T T T E=
[«]
==
“SF—st-—r [
3 B
>T- ST o> T s R T e
= P R
3 38
ko] o
e o 9] £Q
——,— . =2 = - — - —_
So =2}
QO Qo
||||||||||||||||||| C O C Oq=====-f======~--=--f------F-----
— — ——
(o))
o - N =
- o) < fe] [to) ~) o] - - o 5
<C Jas] 1] aa] aa] m aa] [as] [aa] Jaa] m [as] 1] n
Q
5 S
osa

@
>
&
G

T A A Tt D e 5 =< <« T«

II
l
|
1
|
1
1
!
— 1}
I
;

I/O refreshing

Instruction execution

106

Sequence I nput | nstructions Section 3-2

3-2-11 TR Bits

TR bits are used to temporarily retain the ON/OFF status of execution condi-
tions in a program when programming in mnemonic code. They are not used
when programming directly in ladder program form because the processing is
automatically executed by the CX-Programmer. The following diagram shows
a simple application using two TR bits.

Using TRO to TR15

TRO to TR15
Considerations

0.00 001 @ 0.02 100.00 Address | Instruction |Operands

i I [O 00200 | LD 0.00
0.03 10001 00201 | oUT TRO
' O 00202 | AND 0.01
i 00203 | ouT TR1
0.04 100,02 00204 | AND 0.02

1l O 00205 | ouT 100.00
0.05 100.03 00206 | LD TR1
¥ O 00207 | AND 0.03

00208 | OUT 100.01
00209 | LD TRO
00210 | AND 0.04

00211 | OUT 100.02
00212 | LD TRO
00213 [ANDNOT | 0.05

00214 | OUT 100.03

TRO to TR15 are used only with LOAD and OUTPUT instructions. There are
no restrictions on the order in which the bit addresses are used.

Sometimes it is possible to simplify a program by rewriting it so that TR bits
are not required. The following diagram shows one case in which a TR bit is
unnecessary and one in which a TR bit is required.

000 4 100.00

1 100.01 (1)

4o
To

0.02 . 0.03 10002
; (% = &

In instruction block (1), the ON/OFF status at point A is the same as for output
CIO 100.00, so AND 0.01 and OUT 100.01 can be coded without requiring a
TR bit. In instruction block (2), the status of the branching point and that of
output CIO 100.02 are not necessarily the same, so a TR bit must be used. In
this case, the number of steps in the program could be reduced by using
instruction block (1) in place of instruction block (2).

TR bits are used only for retaining (OUT TRO to TR15) and restoring (LD TRO
to TR15) the ON/OFF status of branching points in programs with many out-
put branches. They are thus different from general bits, and cannot be used
with AND or OR instructions, or with instructions that include NOT.

107

Sequence I nput | nstructions Section 3-2

TRO to TR15 output A TR bit address cannot be repeated within the same block in a program with
Duplication many output branches, as shown in the following diagram. It can, however, be
used again in a different block.
100.00
o.?o @ O:.E)l @ 0.?2

1o
To
®

=

o

S

o

P

-_ O
T-°
=
I
(]
(=]
o
N

to

Lo

T
o
do
[N
[
Lo
-
I

[N

[

o

O

o

d o
TP
w
N
[
o
o
P

O

do
T
SN

.

=

o

o

S

1o
T =
(6]
4
To
o
N
-
)
o)
w

.
TOo
=

-

=

S

o

N

O

3-2-12 NOT: NOT(520)

Purpose Reverses the execution condition.

Ladder Symbol

— NOT(20) [—

Variations
Variations | Reverses the Execution Condition Each Cycle NOT(520)
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas | Step program areas | Subroutines | Interrupt tasks

OK OK OK OK
Description NOT(520) is placed between an execution condition and another instruction to
invert the execution condition.
Flags There are no flags affected by NOT(520)
Precautions NOT(520) is an intermediate instruction, i.e., it cannot be used as a right-hand
instruction. Be sure to program a right-hand instruction after NOT(520).
Example NOT(520) reverses the execution condition in the following example.
0.00 0.01 100.00
Il Il NOT
0.02
]l
LA

108

Sequence I nput | nstructions Section 3-2

The following table shows the operation of this program section.

Input bit status Output bit status
CIO 0.00 ClO 0.01 CIO 0.02 ClO 0.03

o|lo|o[r|o|r|r|r
o|lo|r|o|lr|o|r|r
o|lr|o|o|r|r|o|r
N NENENEEEEEE

3-2-13 CONDITION ON/OFF: UP(521) and DOWN(522)

Purpose UP(521) turns ON the execution condition for the next instruction for one cycle
when the execution condition it receives goes from OFF to ON. DOWN(522)
turns ON the execution condition for the next instruction for one cycle when
the execution condition it receives goes from ON to OFF.

Ladder Symbols

- | UP(k2) [
— | DOWN(522) [

Variations
Variations | Creates ON Once for Upward Differentiation UP(521)
Immediate Refreshing Specification Not supported
Variations | Creates ON Once for Downward Differentiation UP(522)
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas | Step program areas | Subroutines | Interrupt tasks
OK OK OK OK

Description UP(521) is placed between an execution condition and another instruction to
turn the execution condition into an up-differentiated condition. UP(521)
causes the connecting instruction to be executed just once when the execu-
tion condition goes from OFF to ON.

DOWN(522) is placed between an execution condition and another instruction
to turn the execution condition into a down-differentiated condition.
DOWN(522) causes the connecting instruction to be executed just once when
the execution condition goes from ON to OFF.

The DIFU(013) and DIFD(014) instructions can also be used for the same
purpose, but they require work bits. UP(521) and DOWN(522) simplify pro-
gramming by reducing the number of work bits and program addresses

needed.
Flags There are no flags affected by UP(521) and DOWN(522).
Precautions UP(521) and DOWN(522) are intermediate instructions, i.e., they cannot be

used as right-hand instructions. Be sure to program a right-hand instruction
after UP(521) or DOWN(522).

109

Sequence I nput | nstructions Section 3-2

Examples

0.00

——

The operation of UP(521) and DOWN(522) depends on the execution condi-
tion for the instruction as well as the execution condition for the program sec-
tion when it is programmed in an interlocked program section, a jumped
program section, or a subroutine. Refer to 3-4-4 INTERLOCK and INTER-
LOCK CLEAR: IL(002) and ILC(003), 3-4-6 JUMP and JUMP END: JMP(004)
and JME(005), and 3-19 Interrupt Control Instructions for details.

When CIO 0.00 goes from OFF to ON in the following example, CIO 100.00 is
turned ON for just one cycle.

100.00

O

0.00
100.00 :
o
Cycle
time

When CIO 0.00 goes from ON to OFF in the following example, CIO 100.01 is
turned ON for just one cycle.

100.01

O

0.00

100.01

3-2-14 BIT TEST: TST(350) and TSTN(351)

Purpose

Ladder Symbols

110

LD TST(350), AND TST(350), and OR TST(350) are used in the program like
LD, AND, and OR; the execution condition is ON when the specified bit in the
specified word is ON, and OFF when the bit is OFF.

LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the program
like LD NOT, AND NOT, and OR NOT; the execution condition is OFF when
the specified bit in the specified word is ON, and ON when the bit is OFF.

— | TST(350) [
S S: Source word
N N: Bit number
— | TSTN(351) [
S S: Source word
N N: Bit number

Sequence I nput | nstructions Section 3-2
Variations
Variations | Executed Each Cycle TST(350)
Immediate Refreshing Specification Not supported
Variations | Executed Each Cycle TSTN(351)
Immediate Refreshing Specification Not supported

Applicable Program Areas

Operands

Operand Specifications

Description

Flags

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK OK

N: Bit number

The bit number must be between 0000 and 000F hexadecimal or between
&0000 and &0015 decimal. Only the rightmost bit (0 to F hexadecimal) of the
contents of the word is valid when a word address is specified.

Area S | N
CIO Area CIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959
Timer Area TOO0OO to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM addressesin | @ DO to @ D32767
binary
Indirect DM addresses in | *D0 to *D32767
BCD
Constants #0000 to #000F (binary) or
&0 to &15
Data Registers DRO to DR15
Index Registers
Indirect addressing using ,IRO to ,IR15

Index Registers —2048 to +2047 , IR0 to —2048 to +2047 ,IR15

DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
—(= IR0 to, —(- -)IR15

LD TST(350), AND TST(350), and OR TST(350) can be used in the program
like LD, AND, and OR; the execution condition is ON when the specified bit in
the specified word is ON and OFF when the bit is OFF. Unlike LD, AND, and
OR, bits in the DM area can be used as operands in TST(350).

LD TSTN(351), AND TSTN(351), and OR TSTN(351) can be used in the pro-
gram like LD NOT, AND NOT, and OR NOT; the execution condition is OFF
when the specified bit in the specified word is ON and ON when the bit is OFF.
Unlike LD NOT, AND NOT, and OR NOT, bits in the DM area can be used as
operands in TSTN(351).

Name Label Operation
Error Flag ER OFF or unchanged
Equals Flag = OFF or unchanged
Negative Flag N OFF or unchanged

111

Sequence I nput | nstructions Section 3-2

Precautions TST(350) and TSTN(351) are intermediate instructions, i.e., they cannot be
used as right-hand instructions. Be sure to program a right-hand instruction
after TST(350) or TSTN(351).

Examples LD TST(350) and LD TSTN(351)
In the following example, CIO 100.01 is turned ON when bit 3 of D10 is ON.

100.01

TST
D10
&3

In the following example, CIO 100.02 is turned ON when bit 3 of D10 is OFF.
100.02

TSTN
D10
&3

AND TST(350) and AND TSTN(351)

In the following example, CIO 100.01 is turned ON when CIO 0.00 and bit 3 of
D10 are both ON.

100.01

0.00
——TsT 40
D10
&3

In the following example, CIO 100.02 is turned ON when CIO 0.01 is ON and
bit 3 of D10 is OFF.

100.02

0.01
—— 15N 40
D10
&3

OR TST(350) and OR TSTN(351)
In the following example, CIO 100.01 is turned ON when CIO 0.00 or bit 3 of
D10 is ON.

0,00 10001
LA

— TST

D10
&3

112

Sequence Output I nstructions

Section 3-3

In the following example, CIO 100.02 is turned ON when CIO 0.01 is ON or bit

3 of D10 is OFF.

0.01
11
1

100.02

— TSTN

D10
&3

3-3 Sequence Output Instructions

3-3-1 OUTPUT: OUT
Purpose Outputs the result (execution condition) of the logical processing to the speci-
fied bit.
Ladder Symbol
Variations
Variations Executed Each Cycle for ON Condition ouT
Executed Once for Upward Differentiation Not supported.
Executed Once for Downward Differentiation Not supported.
Immediate Refreshing Specification 10UT

Applicable Program Areas

Operand Specifications

Block program areas

Step program areas | Subroutines

Interrupt tasks

Not allowed OK OK OK
Area OUT bit operand

ClO Area Cl0 0.00 to CIO 6143.15

Work Area WO0.00 to W511.15

Holding Bit Area

HO0.00 to H511.15

Auxiliary Bit Area

A448.00 to A959.15

Timer Area

Counter Area

TR Area

DM Area

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants

Data Registers

113

Sequence Output I nstructions

Section 3-3

Description

Flags

Precautions

Example

3-3-2 OUTPUT NOT:

Purpose

Ladder Symbol

Variations

Area
Index Registers
,IRO to ,IR15
—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to ,IR15
JRO+(++) to ,IR15+(++)
,—(-=-)IRO to, —(- -)IR15

OUT bit operand

Indirect addressing
using Index Registers

If there is no immediate refreshing specification, the status of the execution
condition (power flow) is written to the specified bit in I/O memory. If there is
an immediate refreshing specification, the status of the execution condition
(power flow) is also written to the CPU Unit's output terminal in addition to the
output bit in /O memory.

There are no flags affected by this instruction.

Immediate refreshing (!) can be specified for OUT and OUT NOT. An immedi-
ate refresh instruction updates the status of the output terminal on the CPU
Unit just after the instruction is executed at the same time as it writes the sta-
tus of the execution condition (power flow) to the specified output bit in 1/0O
memory.

100.00
0.(|)O N
! /
100.01
Instruction Operand
LD 0.00
ouT 100.00
OUT NOT 100.01
OUT NOT

Reverses the result (execution condition) of the logical processing, and out-
puts it to the specified bit.

Variations Executed Each Cycle for ON Condition OUT NOT
Executed Once for Upward Differentiation Not supported.
Executed Once for Downward Differentiation | Not supported.

Immediate Refreshing Specification IOUT NOT

Applicable Program Areas

114

Block program areas

Step program areas

Subroutines

Interrupt tasks

Not allowed

OK

OK

OK

Sequence Output I nstructions

Section 3-3

Operand Specifications

Description

Flags

Example

Area

OUT bit operand

CIO Area

CIO 0.00 to CIO 6143.15

Work Area

WO0.00 to W511.15

Holding Bit Area

H0.00 to H511.15

Auxiliary Bit Area

A448.00 to A959.15

Timer Area

Counter Area

TR Area

DM Area

Indirect DM addresses in
binary

Indirect DM addresses in
BCD

Constants

Data Registers

Index Registers

Indirect addressing using
Index Registers

,IRO to ,IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15

DRO to DR15, IR0 to ,IR15
JRO+(++) to ,IR15+(++)
—(= IR0 to, -(- -)IR15

If there is no immediate refreshing specification, the status of the execution
condition (power flow) is reversed and written to a specified bit in 1/O memory.
If there is an immediate refreshing specification, the status of the execution
condition (power flow) is reversed and also written to the CPU Unit's output
terminal in addition to the output bit in 1/O memory.

There are no flags affected by this instruction.

100.00
0.00
()

./
100.01

%,

Instruction

Operand

LD

0.00

ouT

0.01

OUT NOT

0.02

3-3-3 KEEP: KEEP(011)

Purpose

Ladder Symbol

Operates as a latching relay.

S (Set)

— KEEP(011)

B

B: Bit

R (Reset) —I

115

Sequence Output I nstructions Section 3-3
Variations
Variations | Executed Each Cycle for ON Condition KEEP(011)
Executed Once for Upward Differentiation Not supported
Executed Once for Downward Differentiation Not supported
Immediate Refreshing Specification IKEEP(011)

Applicable Program Areas

Operand Specifications

Description

116

Block program areas

Step program areas

Subroutines

Interrupt tasks

Not allowed OK OK OK
Area B

ClO Area ClO0 0.00 to CIO 6143.15

Work Area WO0.00 to W511.15

Holding Bit Area

H0.00 to H511.15

Auxiliary Bit Area

A448.00 to A959.15

Timer Area

Counter Area

DM Area

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

,IRO to ,IR15

—2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)

—(--) IR0 to, —-(--) IR15

When S turns ON, the designated bit will go ON and stay ON until reset,
regardless of whether S stays ON or goes OFF. When R turns ON, the desig-
nated bit will go OFF. The relationship between execution conditions and
KEEP(011) bit status is shown below.

Set
—F——— keer_|— A A
A c _ A B
_| Reset
B c
ON
S execution condition OFF
ON
R execution condition OFF

Status of C

c

Sequence Output I nstructions Section 3-3

If S and R are ON simultaneously, the reset input takes precedence.

ON

Set OFF
ON

Reset OFF

ON
Status of C ofg

The set input (S) cannot be received while R is ON.

ON

Set OFF
ON
Reset OFF

ON
Status of C oFF

KEEP(011) has an immediate refreshing variation ('KEEP(011)). When an
external output bit has been specified for B in a IKEEP(011) instruction, any
changes to B will be refreshed when IKEEP(011) is executed and reflected
immediately in the output bit for the CPU Unit built-in output.

KEEP(011) operates like the self-maintaining bit, but a self-maintaining bit
programmed with KEEP(011) requires one less instruction.

L
Al

002 0.03 100.00
I

100.00

KEEP

100.00
0.03 ’7
11

Self-maintaining bits programmed with KEEP(011) will maintain status even in
an interlock program section, unlike the self-maintaining bit programmed with-
out KEEP(011).

——] — 1]
— —— keEp —]
A o A B S
I
- |
B c
e] — I e |

Output bit C will maintain its Output bit C will be turned
previous status in an interlock. OFF in an interlock.

117

Sequence Output I nstructions Section 3-3

Flags

Precautions

118

KEEP(011) can be used to create flip-flops as shown below.

A B
hi W
s A1 KEEP

—w
1
[vs)

A
—i

LA

2 I R I R

If a holding bit is used for B, the bit status will be retained even during a power
interruption. KEEP(011) can thus be used to program bits that will maintain
status after restarting the PLC following a power interruption. An example of

this that can be used to produce a warning display following a system shut-
down for an emergency situation is shown below.

0.02
[} KEEP
— HO0.00
O|'93 Indicates
11 emergency
situation
0.04
Il
A
01'95 Reset input
A
HO0.00 100.00 Activates
Il warning
" display

The status of I/O Area bits can be retained in the event of a power interruption
by turning ON the IOM Hold Bit and setting IOM Hold Bit Hold in the PLC
Setup. In this case, I/O Area bits used in KEEP(011) will maintain status after
restarting the PLC following a power interruption, just like holding bits. Be sure
to restart the PLC after changing the PLC Setup; otherwise the new settings
will not be used.

No flags are affected by KEEP(011).

Never use an input bit in a normally closed condition on the reset (R) for
KEEP(011) when the input device uses an AC power supply. The delay in
shutting down the PLC’s DC power supply (relative to the AC power supply to
the input device) can cause the operand bit of KEEP(011) to be reset. This sit-
uation is shown below.

Input Unit

e — | KEEP

>
n

120000
» NEVER | I_

The operands for KEEP(011) are input in a different order in ladder diagrams
and mnemonic code.

Ladder diagram order: Set input - KEEP(011) — Reset input

Mnemonic code order: Set input — Reset input —» KEEP(011)

Sequence Output I nstructions

Section 3-3

Example

Note

When CIO 0.00 goes ON in the following example, CIO 100.00 is turned ON.

CIO 100.00 remains ON until CIO 0.01 goes ON.

When CIO 0.02 goes ON and CIO 0.03 goes OFF in the following example,
CIO 100.01 is turned ON. CIO 100.01 remains ON until CIO 0.04 or CIO 0.05

goes ON.
0.00

i

0.01
l
I

KEEP

’7 100.00

0.02

0.
—i! A

0.04

—il

KEEP

’7 100.01

0.05

—i—

Coding

Address

Instruction

Operand

000100

LD

0.00

000101

LD

0.01

000102

KEEP (011)

100.00

000103

LD

0.02

000104

AND NOT

0.03

000105

LD

0.04

000106

OR

0.05

000107

KEEP (011)

100.01

KEEP(011) is input in different orders on in ladder and mnemonic form. In lad-
der form, input the set input, KEEP(011), and then the reset input. In mne-

monic form, input the set input, the reset input, and then KEEP(011).

3-3-4 DIFFERENTIATE UP/DOWN: DIFU(013) and DIFD(014)

Purpose

Ladder Symbols

DIFU(013) turns the designated bit ON for one cycle when the execution con-
dition goes from OFF to ON (rising edge).
DIFD(014) turns the designated bit ON for one cycle when the execution con-
dition goes from ON to OFF (falling edge).

— 1 DIFU(013)

B

— 1 DIFD(014)

B

B: Bit

B: Bit

119

Sequence Output I nstructions Section 3-3
Variations
Variations Executed Each Cycle for ON Condition Not supported
Executed Once for Upward Differentiation DIFU(013)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification IDIFU(013)
Variations Executed Each Cycle for ON Condition Not supported
Executed Once for Upward Differentiation DIFD(014)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification IDIFD(014)

Applicable Program Areas

Operand Specifications

Description

120

Block program areas

Step program areas | Subroutines | Interrupt tasks

Not allowed OK OK OK
Area B

ClO Area ClO0 0.00 to CIO 6143.15

Work Area WO0.00 to W511.15

Holding Bit Area

H0.00 to H511.15

Auxiliary Bit Area

A448.00 to A959.15

Timer Area

Counter Area

DM Area

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

,IRO to ,IR15

—2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)
—(--)IR0Oto,15—-(--) IR

When the execution condition goes from OFF to ON, DIFU(013) turns B ON.
When DIFU(013) is reached in the next cycle, B is turned OFF.

Execution condition

Status of B

—

1 cycle

When the execution condition goes from ON to OFF, DIFD(014) turns B ON.
When DIFD(014) is reached in the next cycle, B is turned OFF.

Execution condition

.o

Status of B

1 cycle

Sequence Output I nstructions Section 3-3

Flags

Precautions

Examples

DIFU(013) and DIFD(014) have immediate refreshing variations (IDIFU(013)
and !DIFD(014)). When an external output bit has been specified for B in one
of these instructions, any changes to B will be refreshed when the instruction
is executed and reflected immediately in the output bit for the CPU Unit built-in
output.

UP(521) and DOWN(522) can be used to execute an instruction for just one
cycle when the execution condition goes from OFF — ON or ON — OFF.
Refer to 3-2-13 CONDITION ON/OFF: UP(521) and DOWN(522) for details.

No flags are affected by DIFU(013) and DIFD(014).

The operation of DIFU(013) or DIFD(014) depends on the execution condition
for the instruction itself as well as the execution condition for the program sec-
tion when it is programmed in an interlocked program section, a jumped pro-
gram section, or a subroutine. Refer to 3-4-4 INTERLOCK and INTERLOCK
CLEAR: 1L(002) and ILC(003), 3-4-6 JUMP and JUMP END: JMP(004) and
JME(005), and 3-19 Interrupt Control Instructions for details.

If DIFU(013) is used in a FOR-NEXT loop and the loop repeats in a cycle, the
controlled bit will be always ON or always OFF within that loop.
Operation of DIFU(013)

When CIO 0.00 goes from OFF to ON in the following example, CIO 100.00 is
turned ON for one cycle.

0.00
i DIFU
100.00 0.00
100.00
i cyclet 1 cycle :
Operation of DIFD(014)
When CIO 0.00 goes from ON to OFF in the following example, CIO 100.00 is
turned ON for one cycle.
0.00
{] DIFD
100.00
0.00
100.00

121

Sequence Output I nstructions

Section 3-3

3-3-5

Purpose

Ladder Symbols

Variations

Applicable Program Areas

Operand Specifications

122

SET and RESET: SET and RSET

SET turns the operand bit ON when the execution condition is ON.

RSET turns the operand bit OFF when the execution condition is ON.

SET

RSET

B: Bit

B: Bit

Variations Executed Each Cycle for ON Condition SET
Executed Once for Upward Differentiation @SET
Executed Once for Downward Differentiation | %SET
Immediate Refreshing Specification ISET
Combined Executed Once and Bit Refreshed I@SET
variations Immediately for Upward Differentiation
Executed Once and Bit Refreshed 1%SET
Immediately for Downward Differentiation
Variations Executed Each Cycle for ON Condition RSET
Executed Once for Upward Differentiation @RSET
Executed Once for Downward Differentiation | %RSET
Immediate Refreshing Specification IRSET
Combined Immediate Refreshing Once for Upward I@RSET
Variations Differentiation
Immediate Refreshing Once for Downward 1%RSET
Differentiation
Block program areas | Step program areas | Subroutines | Interrupt tasks
OK OK OK OK

Area

CIO Area

ClO 0.00 to CIO 6143.15

Work Area

W0.00 to W511.15

Holding Bit Area

H0.00 to H511.15

Auxiliary Bit Area

A448.00 to A959.15

Timer Area

Counter Area

DM Area

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants

Data Registers

Sequence Output I nstructions Section 3-3

Description

Flags

Precautions

Area B

Index Registers

Indirect addressing ,IRO to ,IR15

using Index Registers | _o048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—~(=-) IR0 to ,—(- -) IR15

SET turns the operand bit ON when the execution condition is ON, and does
not affect the status of the operand bit when the execution condition is OFF.
Use RSET to turn OFF a bit that has been turned ON with SET.

Execution condition g?F

of SET 1
ON

Status of B OFF _|

RSET turns the operand bit OFF when the execution condition is ON, and
does not affect the status of the operand bit when the execution condition is
OFF. Use SET to turn ON a bit that has been turned OFF with RSET.

Execution condition ©ON
of RSET OFF

Status of B

SET and RSET have immediate refreshing variations (!SET and !'RSET).
When an external output bit has been specified for B in one of these instruc-
tions, any changes to B will be refreshed when the instruction is executed and
reflected immediately in the output bit for the CPU Unit built-in output.

The set and reset inputs for a KEEP(011) instruction must be programmed
with the instruction, but the SET and RSET instructions can be programmed
completely independently. Furthermore, the same bit may be used as the
operand in any number of SET or RSET instructions.

No flags are affected by SET and RSET.

SET and RSET cannot be used to set and reset timers and counters.

When SET or RSET is programmed between IL(002) and ILC(003) or
JMP(004) and JME(005), the status of the specified bit will not be changed if
the program section is interlocked or jumped.

123

Sequence Output I nstructions

Section 3-3

Example

Differences between OUT/OUT NOT and SET/RSET

The operation of SET differs from that of OUT because the OUT instruction
turns the operand bit OFF when its execution condition is OFF. Likewise,
RSET differs from OUT NOT because OUT NOT turns the operand bit ON

when its execution condition is OFF.

0.00
|1l
11
0.01
i} SET
100.01
0.02
I} RSET
100.01

100.00 10 100.00 is turned ON/OFF

when CIO 0.00 goes ON/OFF.

ClO 100.01 is turned ON when
CIO 0.01 goes ON; it remains
ON until CIO 0.02 goes ON.

3-3-6 MULTIPLE BIT SET/RESET: SETA(530)/RSTA(531)

Purpose

Ladder Symbols

Variations

Applicable Program Areas

124

SETA(530) turns ON the specified number of consecutive bits.
RSTA(531) turns OFF the specified number of consecutive bits.

— | SETA(530)
D D: Beginning word
N1 N1: Beginning bit
N2 N2: Number of bits
— | RSTA(531)
D D: Beginning word
N1 N1: Beginning bit
N2 N2: Number of bits
Variations Executed Each Cycle for ON Condition SETA(530)
Executed Once for Upward Differentiation @SETA(530)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported
Variations Executed Each Cycle for ON Condition RSTA(531)
Executed Once for Upward Differentiation @RSTA(531)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Sequence Output I nstructions Section 3-3

Operands

Note

Operand Specifications

Description

D: Beginning Word
Specifies the first word in which bits will be turned ON or OFF.
N1: Beginning Bit

Specifies the first bit which will be turned ON or OFF. N1 must be #0000 to
#000F (&0 to &15).

N2: Number of Bits
Specifies the number of bits which will be turned ON or OFF. N2 must be
#0000 to #FFFF (&0 to &65535).

The bits being turned ON or OFF must be in the same data area. (The range
of words is roughly D to D+N2+16.)

15 0
D
to
D: 4,096 words max.
Area D N1 N2
CIO Area CIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A448 to A959 A0 to A959
Timer Area TOO0O0O to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM addresses in @ DO to @ D32767
binary
Indirect DM addresses in BCD | *DO0 to *D32767
Constants #0000 to #000F | #0000 to #FFFF
(binary) or &0 to | (binary) or &0 to
&15 &65535

Data Registers --- DRO to DR15
Index Registers
Indirect addressing using IR0 to ,IR15
Index Registers —2048 to +2047, IR0 to —2048 to +2047, IR15

DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(=-) IR0 to, —-(— -) IR15

The operation of SETA(530) and RSTA(531) are described separately below.

Operation of SETA(530)

SETA(530) turns ON N2 bits, beginning from bit N1 of D, and continuing to the
left (more-significant bits). All other bits are left unchanged. (No changes will
be made if N2 is setto 0.)

125

Sequence Output I nstructions Section 3-3

Bits turned ON by SETA(530) can be turned OFF by any other instructions,
not just RSTA(531).

fN1

15 I:n

N2 bits are setto 1 (ON).

SETA(530) can be used to turn ON bits in data areas that are normally
accessed by words only, such as the DM area.

Operation of RSTA(531)

RSTA(531) turns OFF N2 bits, beginning from bit N1 of D, and continuing to
the left (more-significant bits). All other bits are left unchanged. (No changes
will be made if N2 is set to 0.)

Bits turned OFF by RSTA(531) can be turned ON by any other instructions,
not just SETA(530).

N1

15 |:o

N2 bits are reset to 0 (OFF).

RSTA(531) can be used to turn OFF bits in data areas that are normally
accessed by words only, such as the DM area.

Flags
Name Label Operation
Error Flag ER ON if N1 is not within the specified range of 0000 to 000F.
OFF in all other cases.
Examples SETA(530) Example

When CIO 0.00 is turned ON in the following example, the 20 bits (0014 hexa-
decimal) beginning with bit 5 of CIO 200 are turned ON.

0.00

i SETA NL: Bit 5
D 200 15 1211 87 548 0
N1 &5 D: 200 {1 £ ./NZ: 20 bits
N2 &20 201 R e

126

Sequence Output I nstructions

Section 3-3

RSTA(531) Example

When CIO 0.01 is turned ON in the following example, the 20 bits (0014 hexa-
decimal) beginning with bit 3 of CIO 210 are turned OFF.

0.01
il RSTA — N1: Bit 3
D 210 0
Nt &3 D:210 [5.8 0 0] N2: 20 bits
N2 &20 211 0.0
3-3-7 SINGLE BIT SET/RESET: SETB(532)/RSTB(533)
Purpose SETB(532) turns ON the specified bit.
RSTB(533) turns OFF the specified bit.
Ladder Symbols
SETB(532)[D: Word address
D N: Bit number
N
— |RSTB(533) D: Word address
D N: Bit number
N
Variations
Variations Executed Each Cycle for ON Condition SETB(532)
Executed Once for Upward Differentiation @SETB(532)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification ISETB(532)
Combined Executed Once and Bit Refreshed I@SETB(532)
Variations Immediately for Upward Differentiation
Executed Once and Bit Refreshed Not supported
Immediately for Downward Differentiation
Variations Executed Each Cycle for ON Condition RSTB(533)
Executed Once for Upward Differentiation @RSTB(533)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification IRSTB(533)
Combined Executed Once and Bit Refreshed I@RSTB(533)
Variations Immediately for Upward Differentiation
Executed Once and Bit Refreshed Not supported
Immediately for Downward Differentiation

Applicable Program Areas

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Operands

D: Word Address
Specifies the word in which the bit will be turned ON or OFF,

N: Beginning Bit
Specifies the bit which will be turned ON or OFF. N must be #0000 to #000F

(&0 to &15).

127

Sequence Output I nstructions Section 3-3

Operand Specifications

Description

128

Area D N

CIO Area CIO 0to CIO 6143

Work Area WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area A448 to A959 A0 to A959

Timer Area TOO0OO to T4095

Counter Area C0000 to C4095

DM Area DO to D32767

Indirect DM addresses in @ DO to @ D32767

binary

Indirect DM addresses in BCD | *DO0 to *D32767

Constants #0000 to #000F (binary)

or &0 to &15

Data Registers DRO to DR15

Index Registers

Indirect addressing using ,IRO to ,IR15

Index Registers —2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
—(—-) IR0 to, -(— -) IR15

The functions of SETB(532) and RSTB(533) are described separately below.

Operation of SETB(532)

SETB(532) turns ON bit N of word D when the execution condition is ON. The
status of the bit is not affected when the execution condition is OFF. Unlike
SET, SETB(532) can turn ON a bit in the DM area.

15
IRNRERERERERERE
T— This bit is turned ON.
Execution condition 8EF
Bit N of word D 82: .

Bits turned ON by SETB(532) can be turned OFF by any other instruction, not
just RSTB(533).

Sequence Output I nstructions Section 3-3

Flags

Precautions

Operation of RSTB(533)

RSTB(533) turns OFF bit N of word D when the execution condition is ON.
The status of the bit is not affected when the execution condition is OFF. (Use
SETB(532) to turn ON the bit.) Unlike RST, RSTB(533) can turn OFF a bit in
the DM area.

15
INNNNNNERERNNED

This bit is turned OFF.

on conditon o B[
Execution condition OFF

, ON —|
Bit N of word D OFF

Bits turned OFF by RSTB(533) can be turned ON by any other instruction, not
just SETB(532).

Name Label Operation
Error Flag ER ON if N is not within the specified range of 0000 to 000F
(&0 to &15).
OFF in all other cases.

SETB(532) and RSTB(533) cannot set/reset timers and counters.

When SETB(532) or RSTB(533) is programmed between IL(002) and
ILC(003) or IMP(004) and JME(005), the status of the specified bit will not be
changed if the program section is interlocked or jumped, i.e., when the inter-
lock condition or jump condition is OFF.

SETB(532) and RSTB(533) have immediate refreshing variations
('SETB(532) and 'RSTB(533)). When an external output bit has been speci-
fied in one of these instructions, any changes to the specified bit will be
refreshed when the instruction is executed and reflected immediately in the
output bit for the CPU Unit built-in output.

Differences between SET/RSET and SETB(532)/RSTB(533)

The SET and RSET instructions operate somewhat differently from

SETB(532) and RSTB(533).

1. The instructions operate in the same way when the specified bit is in the
CIO, W, H, or A Area.

2. The SETB(532) and RSTB(533) instructions can control bits in the DM Ar-
ea, unlike SET and RSET.

Differences between OUTB(534) and SETB(532)/RSTB(533)

The OUTB(534) instruction operates somewhat differently from SETB(532)

and RSTB(533).

1. The SETB(532) and RSTB(533) instructions change the status of the
specified bit only when their execution condition is ON. These instructions

have no effect on the status of the specified bit when their execution con-
dition is OFF.

2. The OUTB(534) instruction turns ON the specified bit when its execution
condition is ON and turns OFF the specified bit when its execution condi-
tion is OFF.

129

Sequence Output I nstructions Section 3-3

3. The set and reset inputs for a KEEP(011) instruction must be programmed
with the instruction, but the SETB(532) and RSTB(533) instructions can be
programmed completely independently. Furthermore, the same bit may be
used as the operand in any number of SETB(532) and RSTB(533) instruc-

tions.
0.00
|| SETB | Bit02 of DO is turned ON
DO when CIO 0.00 is ON.
&2
0.01
|| RSTB | Bit02 of D2 is tumed OFF
D2 when CIO 0.01 is ON.
&2

3-3-8 SINGLE BIT OUTPUT: OUTB(534)

Purpose

Ladder Symbols

Variations

Applicable Program Areas

Operands

Operand Specifications

130

OUTB(534) outputs the status of the instruction’s execution condition to the
specified bit. OUTB(534) can control a bit in the DM Area, unlike OUT.

— |OUTB(534)] D: Word address
D N: Bit number
N
Variations Executed Each Cycle for ON Condition OUTB(534)

Executed Once for Upward Differentiation @OUTB(534)
Executed Once for Downward Differentiation | Not supported

Immediate Refreshing Specification IOUTB(534)

Block program areas | Step program areas | Subroutines | Interrupt tasks

Not allowed OK OK OK

D: Word Address

Specifies the word containing the bit to be controlled.

N: Beginning Bit

Specifies the bit to be controlled. N must be #0000 to #000F (&0 to &15).

Area D | N
CIO Area CIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A448 to A959 A0 to A959
Timer Area TOO0OO to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM addresses in @ DO to @ D32767
binary
Indirect DM addresses in BCD | *DO0 to *D32767
Constants #0000 to #000F (binary)
or &0 to &15

Sequence Output I nstructions Section 3-3

Description

Flags

Precautions

Example

Area D N
Data Registers DRO to DR15
Index Registers
Indirect addressing using ,IRO to ,IR15
Index Registers —2048 to +2047, IR0 to —2048 to +2047, IR15

DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)

—~(=-) IR0 to, —(~ -) IR15

When the execution condition is ON, OUTB(534) turns ON bit N of word D.
When the execution condition is OFF, OUTB(534) turns OFF bit N of word D.

L This bit is turned OFF.

) o ON ’—‘ ’—‘ ’—‘
Execution condition
OFF

. ON
Bit N of word D
OFF

If the immediate refreshing version is not used, the status of the execution
condition (power flow) is written to the specified bit in I/O memory. If the imme-
diate refreshing version is used, the status of the execution condition (power
flow) is written to the CPU Unit's output terminal as well as the output bit in /O
memory.

There are no flags affected by this instruction.

Immediate refreshing ({OUTB(534)) can be specified. An immediate refresh
instruction updates the status of the output terminal just after the instruction is
executed on an output bit allocated to a CPU Unit built-in output, at the same
time as it writes the status of the execution condition (power flow) to the spec-
ified output bit in 1/O memory.

When OUTB(534) is programmed between IL(002) and ILC(003), the speci-
fied bit will be turned OFF if the program section is interlocked. (This is the
same as an OUT instruction in an interlocked program section.)

When a word is specified for the bit number (N), only bits 00 to 03 of N are

used. For example, if N contains FFFA hex, OUTB(534) will control bit 10 of
word D.

ouTB Bit 10 of DO is turned OFF
DO when CIO 0.00 is OFF.

&10

131

Sequence Control Instructions Section 3-4

3-4 Sequence Control Instructions
3-4-1 END: END(001)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Description

Precautions

132

Indicates the end of a program.

— | END(001)
Variations | Executed Each Cycle for ON Condition END(001)
Immediate Refreshing Specification Not supported

Block program areas | Step program areas | Subroutines | Interrupt tasks

Not allowed Not allowed Not allowed OK

END(001) completes the execution of a program for that cycle. No instructions
written after END(001) will be executed.

Execution proceeds to the program with the next task number. When the pro-
gram being executed has the highest task number in the program, END(001)
marks the end of the overall main program.

]

Task1 Program A

To the next task number

Task 2 Program B

To the next task number

Taskn Program Z

End of the main program

—F——T

1/O refreshing

Always place END(001) at the end of each program. A programming error will
occur if there is not an END(001) instruction in the program.

Sequence Control Instructions

Section 3-4

3-4-2 NO OPERATION: NOP(000)

Purpose This instruction has no function. (No processing is performed for NOP(000).)
Ladder Symbol There is no ladder symbol associated with NOP(000).
Variations

Variations | Executed Each Cycle for ON Condition NOP(000)

Immediate Refreshing Specification

Not supported

Applicable Program Areas

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Description No processing is performed for NOP(000), but this instruction can be used to
set aside lines in the program where instructions will be inserted later. When
the instructions are inserted later, there will be no change in program

addresses.

Flags No flags are affected by NOP(000).

Precautions NOP(000) can only be used with mnemonic displays, not with ladder pro-
grams.

3-4-3 Overview of Interlock Instructions

Interlock Instructions The following instruction combinations can be used to interlock outputs in a

program section.

« INTERLOCK and INTERLOCK CLEAR (IL(002) and IL(003))

* MULTI-INTERLOCK DIFFERENTIATION HOLD and MULTI-INTERLOCK
CLEAR (MILH(517) and MILC(519))*
Note MILH(517) holds the status of the Differentiation Flag, so differen-

tiated instructions that were interlocked are executed after the in-
terlock is cleared.

* MULTI-INTERLOCK DIFFERENTIATION RELEASE and MULTI-INTER-
LOCK CLEAR (MILR(518) and MILC(519))*
Note MILR(518) does not hold the status of the Differentiation Flag, so

differentiated instructions that were interlocked are not executed af-
ter the interlock is cleared.

133

Sequence Control Instructions

Section 3-4

Differences between
Interlocks and Multiple
Interlocks

Differences between
MILH(517) and MILR(518)

Precautions

134

Regular interlocks (IL(002) and IL(003)) cannot be nested, but multiple inter-
locks (MILH(517), MILR(518), and MILC(519)) can be nested. Ladder pro-
gramming can be simplified by nesting multiple interlocks, as shown in the
following diagram.

Interlocks with MILH and MILC
a

Interlocks with IL and ILC

a

)4
| MILH [|-
0 -
L owm
L~
Ic |-
o a b
— ———{ MiLH
L |
T —H— L
L e |
L~ |
Ic |-
Cc
— ————{ MILH a b c
> A -
L »s]
L s
ILc | =
MILC
2
MILC
1| <
MILC
0|<—

Differentiated instructions (DIFU, DIFD, or instructions with a @ or % prefix)
operate differently in interlocks created with MILH(517) and MILR(518).

The operation of differentiated instructions in an interlock created with
MILH(517) is identical to the operation in an interlock created with IL(002).

For details, refer to 3-4-5 MULTI-INTERLOCK DIFFERENTIATION HOLD,
MULTI-INTERLOCK DIFFERENTIATION RELEASE, and MULTI-INTER-
LOCK CLEAR: MILH(517), MILR(518), and MILC(519).

Do not combine interlocks created with different interlock instructions (IL-ILC,
MILH-MILC, and MILR-MILC). The interlocks may not operate properly if dif-
ferent interlock methods are used together. For details on combining instruc-
tions, refer to 3-4-5 MULTI-INTERLOCK DIFFERENTIATION HOLD, MULTI-
INTERLOCK DIFFERENTIATION RELEASE, and MULTI-INTERLOCK
CLEAR: MILH(517), MILR(518), and MILC(519).

Sequence Control Instructions

Section 3-4

Note

Differences between
Interlocks and Jumps

For example, an MILH(517) instruction cannot be inserted between IL(002)

and IL(003).

i o1

A

|} MILH

ILC

MILH(517) is in an interlocked area
between IL(002) and ILC.(003).

The different interlocks (IL-ILC, MILH-MILC, and MILR-MILC) can be used
together as long as the interlocked program sections do not overlap.

For example, all three interlock methods can be used without overlapping, as

shown in the following diagram.

1 IL

ILC

|} MILH

MILC

|} MILR

MILC

Different interlock methods can be
used as long as the interlocked
areas do not overlap.

The following table shows the differences between interlocks (created with
IL(002)/ILC(003), MILH(517)/MILC(519), or MILR(518)/MILC(519)) and jumps

created with IMP(004)/JME(005).

Item

Treatment in 1L(002)/ILC(003), MILH(517)/
MILC(519), or MILR(518)/MILC(519))

Treatment in
JMP(004)/JME(005)

Instruction execution

Instructions other than OUT, OUT NOT,
OUTB(534), and timer instructions are not
executed.

No instructions are executed.

Output status in instructions

Except for outputs in OUT, OUT NOT,
OUTB(534), and timer instructions, all out-
puts retain their previous status.

All outputs retain their previous status.

(except (TTIM(087),
TTIMX(555), MTIM(543), and
MTIMX(554))

Bits in OUT, OUT NOT, OFF All outputs retain their previous status.
OUTB(534)
Status of timer instructions Reset Operating timers (TIM, TIMX(550),

TIMH(015), TIMHX(551), TMHH(540),
TMHHX(552) only) continue timing because
the PVs are updated even when the timer
instruction is not being executed.

135

Sequence Control Instructions Section 3-4

3-4-4 INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003)

Purpose

Ladder Symbols

Variations

Applicable Program Areas

Description

Note

136

Interlocks all outputs between IL(002) and ILC(003) when the execution con-
dition for IL(002) is OFF. IL(002) and ILC(003) are normally used in pairs.

- | IL(002)

| ILC(003)

Variations | Interlocks when OFF/Does Not interlock when ON | IL(002)
Immediate Refreshing Specification Not supported
Variations | Executed Each Cycle for ON Condition ILC(003)
Immediate Refreshing Specification Not supported

Block program areas | Step program areas | Subroutines | Interrupt tasks
Not allowed Not allowed OK OK

When the execution condition for IL(002) is OFF, the outputs for all instruc-
tions between IL(002) and ILC(003) are interlocked. When the execution con-
dition for IL(002) is ON, the instructions between IL(002) and ILC(003) are
executed normally.

Execution Execution
Execution condition ON condition OFF
condition

L S

Normal Outputs

Interlocked section execution interlocked.

of the program

ILC e e 1 _____

The following table shows the treatment of various outputs in an interlocked
section between IL(002) and ILC(003).

Instruction Treatment
Bits specified in OUT, OUT NOT, or OUTB(534) OFF
TIM, TIMX(550), TIMH(015), Completion Flag OFF (reset)
E\')IAI—';'I-)I()((?S;%) T"|Y|||\|_/|”|:|((552§)) and PV Time set value (reset)
TIMXL(553)
Bits/words specified in all other instructions (See note.) |Retain previous status.

Bits and words in all other instructions including TTIM(087), TTIMX(555),
MTIM(543), MTIMX(554), SET, RSET, CNT, CNTX(546), CNTR(012),
CNTRX(548), SFT, and KEEP(011) retain their previous status.

If there are bits which you want to remain ON in an interlocked program sec-
tion, set these bits to ON with SET just before IL(002).

Sequence Control Instructions

Section 3-4

It is often more efficient to switch a program section with 1L(002) and
ILC(003). When several processes are controlled with the same execution
condition, it takes fewer program steps to put these processes between
IL(002) and ILC(003).

— i

—I—1

The following table shows the differences between [L(002)/ILC(003) and
JMP(004)/JME(005).

Item

Treatment in
IL(002)/ILC(003)

Treatment in
JMP(004)/JME(005)

Instruction execution

Instructions other than OUT, OUT NOT,
OUTB(534), and timer instructions are
not executed.

No instructions are executed.

Output status in instructions

Except for outputs in OUT, OUT NOT,
OUTB(534), and timer instructions, all

All outputs retain their previous status.

outputs retain their previous status.

Bits in OUT, OUT NOT, OUTB(534) |OFF All outputs retain their previous status.
Status of timer instructions Reset Operating timers (TIM, TIMX(550),
(except (TTIM(087), TTIMX(555), TIMH(015), TIMHX(551), TMHH(540),
MTIM(543), and MTIMX(554)) TMHHX(552) only) continue timing
because the PVs are updated even
when the timer instruction is not being
executed.
Flags
Name Label Operation
Error Flag ER OFF
Equals Flag = OFF or unchanged
Negative Flag N OFF or unchanged

Precautions

The cycle time is not shortened when a section of the program is interlocked
because the interlocked instructions are executed internally.

The operation of DIFU(013), DIFD(014), and differentiated instructions is not
dependent solely on the status of the execution condition when they are pro-
grammed between IL(002) and ILC(003). Changes in the execution condition
for DIFU(013), DIFD(014), or a differentiated instruction are not recorded if the
DIFU(013) or DIFD(014) is in an interlocked section and the execution condi-
tion for the IL(002) is OFF.

137

Sequence Control Instructions

Section 3-4

Differential Instruction in
Interlocks

138

In general, IL(002) and ILC(003) are used in pairs, although it is possible to
use more than one IL(002) with a single ILC(003) as shown in the following
diagram. If IL(002) and ILC(003) are not paired, an error message will appear
when the program check is performed but the program will be executed prop-

erly.

—— v =

-

ILC

Execution condition

Program section

a b A B
OFF ON Interlocked Interlocked
OFF OFF Interlocked Interlocked
ON OFF Not interlocked | Interlocked
ON ON Not interlocked | Not interlocked

IL(002) and ILC(003) cannot be nested, as in the following diagram. (Use
MILH(517)/MILR(518) and MILC(519) when it is necessary to nest interlocks.)

——1

ILC

ILC

Differentiated instructions (DIFU(013), DIFD(014), or instructions with a @ or
% prefix) written between IL(002) and ILC(003) are executed according to
changes in memory status between when the interlock is started and when it
is released. If a differentiated condition is met, it will be effected when the
interlock is released.

Sequence Control Instructions Section 3-4

For example, if the input condition for DIFU(013) is OFF when an interlock is
started and ON when the interlock is released, the operand bit of DIFU(013)
will be turned ON when the interlock is released.
0.00

— i

1. Assume that the input condition for DIFU(013) (CIO 0.01) is OFF when CIO 0.00 turns OFF
(i.e., when the interlock is started.
2. Assume that CIO 0.01 turns ON while CIO 0.00 is OFF (i.e., while the interlock is in effect).
3. DIFU(013) will be executed to turn ON CIO 100.00 when CIO 0.00 turns ON
(i.e., when the interlock is released) if the input condition for DIFU(013) (CIO 0.01) is still ON.

0.01
1 DIFU
100.00

ILC

IL(002) affects differentiated operation in the same way as MILH(517).
Timing Chart

No interlocked. Interlocked. No interlocked.
ON ; ;
ClO 0.00
OFF .
E Differentiation condition
ON f--======mmm-mmmo Foomeeooes 7
Cl0 0.01 ! T |
OFF : !
OFF \ !
DIFU(013) executed.
M
[]
ClO 10.00
OFF -
1 cycle

139

Sequence Control Instructions Section 3-4

Examples When CIO 0.00 is OFF in the following example, all outputs between IL(002)
and ILC(003) are interlocked. When CIO 0.00 is ON in the following example,
the instructions between IL(002) and ILC(003) are executed normally.

0.00 ' CI00.00 ! CIO 0.00 OFF!
- ov :
e f e 8 R
; 0.01 100.00
; — OFF
r | 002 HO.00 : !
0 orF
; Normal : , Outputs
' ;| execution) interlocked
E —| I— TIM E iReset 3
; I : - |
' 1 SET ' 'Retained !
; 100.03] : ‘ :
' I I CNT 3 Retained) 3
ST . 1 |
N e
e]

3-4-5 MULTI-INTERLOCK DIFFERENTIATION HOLD, MULTI-INTERLOCK
DIFFERENTIATION RELEASE, and MULTI-INTERLOCK CLEAR:
MILH(517), MILR(518), and MILC(519)

Purpose Interlocks all outputs between MILH(517) (or MILR(518)) and MILC(519)
when the execution condition for MILH(517) (or MILR(518)) is OFF. MILH(517)
(or MILR(518)) and MILC(519) are normally used in pairs.

Unlike the IL(002)/ILC(003) interlocks, the MILH(517)/MILC(519) and
MILR(518)/MILC(519) interlocks can be nested. The operation of differenti-
ated instructions is different for interlocks created with MILH(517) and

MILR(518).
Ladder Symbols
——1 MILH(517)
N N: Interlock Number
D D: Interlock Status Bit
—1 MILR(518)
N N: Interlock Number
D D: Interlock Status Bit

140

Sequence Control Instructions Section 3-4

MILC(519)

N N: Interlock Number

N: Interlock Number

The interlock number must be between 0 and 15. Match the interlock number
of the MILH(517) (or MILR(518)) instruction with the same number in the cor-
responding MILC(519) instruction.

The interlock numbers can be used in any order.

Operands

D: Interlock Status Bit
* ON when the program section is not interlocked.
» OFF when the program section is interlocked.

When the interlock is engaged, the Interlock Status Bit can be force-set to
release the interlock. Conversely, when the interlock is not engaged, the Inter-
lock Status Bit can be force-reset to engage the interlock.

Operand Specifications

Variations

Applicable Program Areas

Area N D
CIO Area ClO 0.00 to CIO 6143.15
Work Area --- WO0.00 to W511.15

Holding Bit Area

HO0.00 to H511.15

Auxiliary Bit Area

A0.00 to A959.15

Timer Area

Counter Area

DM Area

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

,IRO to ,IR15

—2048 to +2047 ,IRO to
—2048 to +2047 ,IR15

DRO to DR15, IR0 to IR15

Variations | Interlocks when OFF/Does Not interlock when ON | MILH(517) and
MILR(518)
Immediate Refreshing Specification Not supported
Variations | Executed Each Cycle for ON Condition MILC(519)
Immediate Refreshing Specification Not supported

The following table shows the applicable program areas for MILH(517),

MILR(518), and MILC(519).

Block program areas

Step program areas

Subroutines

Interrupt tasks

Not allowed

Not allowed

OK

OK

141

Sequence Control Instructions Section 3-4

Description

142

Note

When the execution condition for MILH(517) (or MILR(518)) with interlock
number N is OFF, the outputs for all instructions between that MILH(517)/
MILR(518) instruction and the next MILC(519) with interlock number N are
interlocked.

When the execution condition for MILH(517) (or MILR(518)) with interlock
number N is ON, the instructions between that MILH(517)/MILR(518) instruc-
tion and the next MILC(519) with interlock number N are executed normally.

Interlock Status

The following table shows the treatment of various outputs in an interlocked
section between MILH(517)/MILR(518) instruction and the next MILC(519).

Instruction Treatment
Bits specified in OUT, OUT NOT, or OUTB(534) OFF
TIM, TIMX(550), TIMH(015), Completion Flag OFF (reset)
TIMHX(551), TMHH(S40), PV Time set value (reset)
TMHHX(552), TIML(542), and
TIMXL(553)

Bits/words specified in all other instructions (See note.) |Retain previous status.

Bits and words in all other instructions including TTIM(087), TTIMX(555),
MTIM(543), MTIMX(554), SET, RSET, CNT, CNTX(546), CNTR(012),
CNTRX(548), SFT, and KEEP(011) retain their previous status.

The MILH(517)/MILR(518) instruction turns OFF the Interlock Status Bit
(operand D) when the interlock is in engaged and turns ON the bit when the
interlock is not engaged. Consequently, the Interlock Status Bit can be moni-
tored to check whether or not the interlock for a given interlock number is
engaged.

Input condition ON
(Normal operation) Input condition OFF

:

|} MILH | === e- 1mmme-
Input condition n i

Normal Outputs interlocked.

operation (Outputs OFF,
Interlock timers reset, etc.)
Interlocked program Status Bit Interlock Status Bit
section (d) ON (d) OFF
MILC 'I ——————
2l
Nesting

Interlocks are nested when an interlocked program section (MILH(517)/
MILR(518) and MILC(519) combination) is placed within another interlocked
program section (MILH(517)/MILR(518) and MILC(519) combination). Inter-
locks can be nested up to 16 levels.

Nesting can be used for the following kinds of applications.

Sequence Control Instructions Section 3-4

» Example 1

Interlocking the entire program with one condition and interlocking a part
of the program with another condition (1 nesting level)

Global interlock
(Emergency stop)

Al (Peripheral processing)

Partial interlock
(Conveyor RUN)

A2 (Conveyor operation)

» Al and A2 are interlocked when the Emergency Stop Button is ON.
» A2 is interlocked when Conveyor RUN is OFF.

Global interlock

(Emergency stop)
/H’ MILH When the Emergency Stop is ON (input
01— condition OFF), both Al and A2 are
interlocked.
When the Emergency Stop is OFF (input
condition ON), Al is executed normally
and A2 is controlled by the Conveyor
Al (Peripheral processing) RUN switch as described below.
Partial interlock
(Conveyor RUN)
I I MILH When the Conveyor RUN switch is OFF
__ | (input condition OFF), A2 is interlocked.
1 When the Conveyor RUN switch is ON
(input condition ON), A2 is executed

normally.

A2 (Conveyor operation)

MILC

MILC

» Example 2
Interlocking the entire program with one condition and interlocking two
overlapping parts of the program with other conditions (2 nesting levels)

Global interlock
(Emergency stop)

A1l (Peripheral processing)

Partial interlock
(Conveyor RUN)

A2 (Conveyor operation)

Partial interlock
(Arm RUN)

A3 (Arm operation)

* Al, A2, and A3 are interlocked when the Emergency Stop Button is
ON.

» A2 and A3 are interlocked when Conveyor RUN is OFF.

143

Sequence Control Instructions Section 3-4

144

* A3 is interlocked when Arm RUN is OFF.

Global interlock

(Emergency stop)
,H/ MILH When the Emergency Stop is ON (input
ol—— condition OFF), A1, A2, and A3 are
interlocked.

When the Emergency Stop is OFF (input
condition ON), Al is executed normally and A2
and A3 are controlled by the Conveyor RUN
and Arm RUN switches as described below.

A1l (Peripheral processing)

Partial interlock
(Conveyor RUN)

I I MILH When the Conveyor RUN switch is OFF (input

1 [— | condition OFF), both A2 and A3 are interlocked.
When the Conveyor RUN switch is ON (input
condition ON), A2 is executed normally and A3 is
controlled by the Arm RUN switch as described

A2 (Conveyor operation) below.
Partial interlock
(Arm RUN)
I I MILH] When the Arm RUN switch is OFF (input
2 condition OFF), A3 is interlocked.

When the Arm RUN switch is ON (input
condition ON), A3 is executed normally.

A3 (Arm operation)

MILC

MILC

MILC

Differences between MILH(517) and MILR(518)

Differentiated instructions (DIFU(013), DIFD(014), or instructions with a @ or
% prefix) operate differently in interlocks created with MILH(517) and
MILR(518).

When a program section is interlocked with MILR(518), a differentiated
instruction will not be executed when the interlock is cleared even if the differ-
entiation condition was activated during the interlock (comparing the status of
the execution condition when the interlock started to its status when the inter-
lock was cleared).

When a program section is interlocked with MILH(517), a differentiated
instruction will be executed when the interlock is cleared if the differentiation
condition was activated during the interlock (comparing the status of the exe-
cution condition when the interlock started to its status when the interlock was
cleared).

Sequence Control Instructions Section 3-4

Instruction Operation of Differentiated Instructions
MILH(517) A differentiated instruction (DIFU, DIFD, or
MULTI-INTERLOCK DIFFER- |instruction with a @ or % prefix) will be exe-
ENTIATION HOLD cuted after the interlock is cleared if the differ-

entiation condition of the instruction was
established while the instruction was inter-
locked. (The status of the execution condition
when the interlock started is compared to its
status when the interlock was cleared.)

MILR(518) A differentiated instruction (DIFU, DIFD, or
MULTI-INTERLOCK DIFFER- | instruction with a @ or % prefix) will not be
ENTIATION RELEASE executed after the interlock is cleared even if

the differentiation condition of the instruction
was established while the instruction was inter-
locked.

» Operation of Differentiated Instructions in an MILH(517) Interlock

If there is a differentiated instruction (DIFU, DIFD, or instruction with a @
or % prefix) between MILH(517) and the corresponding MILC(519), that in-
struction will be executed after the interlock is cleared if the differentiation
condition of the instruction was established. (The system compares the ex-
ecution condition’s status when the interlock started to its status when the
interlock was cleared.)

In the same way, a differentiated instruction will be executed if its execution
condition is established at the same time that the interlock is started or
cleared.

Many other conditions in the program may cause the differentiation condi-
tion to be reset even if it was established during the interlock. In this case,
the differentiation instruction will not be executed when the interlock is
cleared.

» Example
When a DIFFERENTIATE UP (DIFU(013)) instruction is being used
and the input condition is OFF when the interlock starts and ON when
the interlock is cleared, DIFU(013) will be executed when the interlock
is cleared. (Differentiated instructions operate the same in the
MILH(517) interlock as they would in an IL(002) interlock.)

0.00
|} MILH

1. When CIO 0.00 is OFF (interlock starts), the DIFU's CIO 0.01 input condition is OFF.
2. The DIFU's CIO 0.01 input condition goes from OFF to ON while CIO 0.00 is OFF (DIFU interlocked),
3. When CIO 0.00 goes from OFF to ON (interlock cleared), DIFU is executed if CIO 0.01 is still ON.

001 <’
|} DIFU

100.00

MILC

145

Sequence Control Instructions

Section 3-4

146

Timing Chart
Not interlocked Interlocked Not interlocked
4%14/—>1</—>
ON | i
OFF
Status (OFF) at 1
ON startoflnterlo< 77777777777777777 ON Differentiation condition established
OFFQ\ \aaz&ﬁ*scmrzzfgd
MILH(517) interlock DIFU(013) is executed.
Yy
O B
100.00
OFF
||
1 cycle

Operation of Differentiated Instructions in an MILR(518) Interlock

If there is a differentiated instruction (DIFU, DIFD, or instruction with a @
or % prefix) between MILR(518) and the corresponding MILC(519), that in-
struction will not be executed after the interlock is cleared even if the dif-
ferentiation condition of the instruction was established. (The system
compares the execution condition’s status in the cycle when the interlock
started to its status in the cycle when the interlock was cleared.)

In the same way, a differentiated instruction will not be executed if its exe-

cution condition is established at the same time that the interlock is started

or cleared.
* Example

When a DIFFERENTIATE UP (DIFU(013)) instruction is being used
and the input condition is OFF when the interlock starts and ON when
the interlock is cleared, DIFU(013) will not be executed when the in-
terlock is cleared.

0.00
|} MILR

1. When CIO 0.00 is OFF (interlock starts), the DIFU's CIO 0.01 input condition is OFF.
2. The DIFU's CIO 0.01 input condition goes from OFF to ON while CIO 0.00 is OFF (DIFU interlocked),
3. When CIO 0.00 goes from OFF to ON (interlock cleared), DIFU is not executed even though CIO 0.01 is still ON.

001
|} DIFU

100.00

MILC

Sequence Control Instructions Section 3-4

Timing Chart
Not interlocked Interlocked Not interlocked
‘ / g / > / >
ON ‘ |
0.00
OFF
1 ON
ON [-----mmmmmmmmmme s prosmnenoenenees
0.01 3
OFF ‘
OFF
MILR(518) inte&
ON e DIFU(013) is not executed.
100.00 v
OFF

Controlling Interlock Status from the CX-Programmer

An interlock can be engaged or released manually by force-resetting or force-
setting the Interlock Status Bit (specified with operand D of MILH(517) and
MILR(518)) from the CX-Programmer. The forced status of the Interlock Sta-
tus Bit has priority and overrides the interlock status calculated by program
execution.

Force-set: Releases the interlock.

OFF
|} MILH

n
100.00 CIO 100.00 is OFF when the interlock is engaged.

Program section
controlled by interlock If CIO 100.00 is force-set (ON), the interlock is released.

MILC
n

Force-reset: Engages the interlock.

ON
|1
I

MILH
n
100.00 CIO 100.00 is ON when the interlock is not engaged.

Program section) . .
controlled by interlock If CIO 100.00 is force-reset (OFF), the interlock is engaged.

MILC

Note Program operation can be switched more efficiently by using interlocks with
MILH(517) or MILR(518).

147

Sequence Control Instructions Section 3-4

Instead of switching processing with compound conditions, insert an
MILH(517) or MILR(518) instruction before each process and an MILC(519)
instruction after each process.

a a
| Al | —F———{miLH
07
b
=] | =]
b
——MiLtH |
1
| a2 |
MILC
1|
MILC
0| =

Unlike the IL(002) interlocks, MILH(517) and MILR(518) interlocks can be
nested, so the operation of similar programs will be different if MILH(517) or
MILR(518) is used instead of ILC(002).

Program with MILH(517)/MILC(519) Interlocks

a
(| MILH
0 —
100.00
Al
b
(| MILH
1 J—
100.01
A2
MILC
1| <
A3
MILC
0| -
Execution condition Program section
a b Al A2 A3
OFF ON Interlocked Interlocked Interlocked
OFF
ON OFF Not interlocked | Interlocked Not interlocked
ON ON Not interlocked | Not interlocked | Not interlocked

148

Sequence Control Instructions

Section 3-4

Flags

Precautions

Program with 1L(002)/ILC(003) Interlocks

L J—

a
I

Al

—_—

)

A2

ILC <

This program section is not
A3 controlled by the interlock.

Lc_|— This |LC(0(?®

instruction is ignored
SO ...

Execution condition Program section
a b Al A2 A3
OFF ON Interlocked Interlocked Not interlocked
OFF (Not controlled by
ON OFF Not !nterlocked Interlocked TE?:(”(Sé)OS?zir)]/terlock.)
ON ON Not interlocked Not interlocked

If there are bits which you want to remain ON in a program section interlocked
by MILH(517) or MILR(518), set these bits to ON with SET just before the

MILH(517) or MILR(518) instruction.

Name Label Operation
Error Flag ER OFF

The cycle time is not shortened when a section of the program is interlocked
by MILH(517) or MILR(518) because the interlocked instructions are executed

internally.

149

Sequence Control Instructions Section 3-4

When nesting interlocks, assign interlock numbers so that the nested program
section does not exceed the outer program section.

a
|} MILH
O —_—
Al
b
1 MILH [T
1
| w2 |
MILC
0|
| w3 |
The nested program section
MILC must not go beyond the outer
1 program section.

Other instructions can be input between the MILC(519) instructions, as shown
in the following diagram.

a
|} MILH
O —
100.00
Al
b
|} MILH |
1
100.01
A2
MILC
1| -
Other instructions can be inserted between
two MILC(519) instructions. In this case,
A3 sections Al and A3 operate together. (They
are interlocked when "a" is OFF, regardless
of the ON/OFF status of "b".)
MILC
0| <—

If there is an ILC(003) instruction between an MILH(517) and MILC(519) pair,
the program section between MILH(517) and ILC(003) will be interlocked.

150

Sequence Control Instructions Section 3-4

a
I I MILH When input condition "a" is OFF, only
0 program section Al is interlocked.
| i |
If there is an ILC(003) instruction,
ILC the interlock is cleared at that point.
| z |
MILC |~ The MILC(519) instruction is ignored.
0

If there is an ILC(003) instruction between an MILR(518) and MILC(519) pair,
the ILC(003) instruction will be ignored and the full program section between
MILR(518) and MILC(519) will be interlocked.

a
I I MILR When input condition "a" is OFF, program
sections Al and A2 are interlocked.

| M |
:IILC |~ The ILC(003) instruction is ignored.
| w2 |
MILC
0

If there is another MILH(517) or MILR(518) instruction with the same interlock
number between an MILH(517) and MILC(519) pair and the first MILH(517)
instruction’s interlock is engaged, the second MILH(517)/MILR(518) will not
operate.

If there is another MILH(517) or MILR(518) instruction with the same interlock
number between an MILH(517) and MILC(519) pair and the first MILH(517)
instruction’s interlock is not engaged, the second MILH(517)/MILR(518) will
operate normally.

a
I

MILH When input condition "a" is OFF, program
sections Al and A2 are both interlocked,
O evenif input condition "b" is ON.

Al

—

MILH When input condition "a" is ON and "b"
0 is OFF, only program section A2 is
interlocked.

A2

MILC

151

Sequence Control Instructions Section 3-4

152

Note

The MILR(518) interlocks operate in the same way if there is another
MILH(517) or MILR(518) instruction with the same interlock number between
an MILR(518) and MILC(519) pair.

If there is an MILC(519) instruction with a different interlock number between
an MILH(517)/MILR(518) and MILC(519) pair, that MILC(519) instruction will
be ignored.

a
I I MILH When input condition "a" is OFF, program
0 sections Al and A2 are both interlocked.
| A |
MILC _— This MILC(519) instruction is ignored.
1
| w2 |
MILC
0

If there is an MILH(517) instruction between an IL(002) and ILC(003) pair and
the IL(002) interlock is engaged, the MILH(517) instruction has no effect. In
this case, the program section between IL(002) and ILC(003) will be inter-
locked.

If the IL(002) interlock is not engaged and the MILH(517) instruction’s execu-
tion condition (b in this case) is OFF, the program section between MILH(517)
and ILC(003) will be interlocked.

a
I IL When input condition "a" is OFF, program

sections Al and A2 are both interlocked.

| AL |
b
|1 MILH _~ If the program section is not interlocked
I by IL(002) and "b" is OFF, program
0 section A2 is interlocked.
| w2 |

ILC

If there is an MILC(519) instruction between an IL(002) and ILC(003) pair, that
MILC(519) instruction will be ignored and the entire program section between
IL(002) and ILC(003) will be interlocked.

Sequence Control Instructions Section 3-4

—_

IL When input condition "a" is OFF, program
sections Al and A2 are both interlocked.

| M |

- The MILC(519) instruction is ignored.

MILC

| E |

ILC

Examples When W0.00 and WO0.01 are both ON, the instructions between MILH(517)
with interlock number 0 and MILC(519) with interlock number O are executed
normally.

When WO0.00 is OFF, the instructions between MILH(517) with interlock num-
ber 0 and MILC(519) with interlock number O are interlocked.

When WO0.00 is ON and WO0.01 are OFF, the instructions between MILH(517)
with interlock number 1 and MILC(519) with interlock number 1 are inter-
locked. The other instructions are executed normally.

WO0.00 and W0.01 WO0.00 ON and W0.01
W0.00 both ON WO0.00 OFF OFF
|} MILH :
0
st Executed
200.00 A normally.
0.01 : :
1 | OFF
WO0.01
|} MILH | ;
1|— .
100.01
HO0.00 3 -
Oi(?z Executed . OFF 1
I O normally. 3
; \ Outputs
I I SET Held interlocked. 3 g Outputs
110.03 ! ! interlocked.
MILC V)
1 |+—
|} CNT %
L Executed
| ||_ #10 Held normally.
MILC)
0|<e+——— \ \ \

153

Sequence Control Instructions Section 3-4

3-4-6 JUMP and JUMP END: JMP(004) and JME(005)

Purpose When the execution condition for JMP(004) is OFF, program execution jumps
directly to the first JME(005) in the program with the same jump number.
JMP(004) and JME(005) are used in pairs.

Ladder Symbols

- | JMP(004)

N N: Jump number
— | JME(005)

N N: Jump number

Variations

Variations | Jumps when OFF/Does Not Jump when ON JMP(004)
Immediate Refreshing Specification Not supported
Variations | Executed Each Cycle for ON Condition JME(005)
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas | Step program areas | Subroutines | Interrupt tasks
OK Not allowed OK OK

Operands N: Jump Number
The jump number must be 0000 to O0OFF (&0 to &255 decimal).

Operand Specifications

Area N
JMP(004) JME(005)
CIO Area ClIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area AO to A959
Timer Area TO0O00 to T4095
Counter Area C0000 to C4095
DM Area DO to D32767 -
Indirect DM addresses in @ DO to @ D32767
binary
Indirect DM addresses in | *D0 to *D32767
BCD
Constants #0000 to #00FF (binary) or | #0000 to #00FF (binary) or
&0 to &255 &0 to &255
Data Registers DRO to DR15
Index Registers ---
Indirect addressing using ,IRO to ,IR15
Index Registers ~2048 to +2047, IRO to
—2048 to +2047, IR15
DRO to DR15, IR0 to IR15

154

Sequence Control Instructions Section 3-4

When the execution condition for JMP(004) is ON, no jump is made and the
program is executed consecutively as written.

When the execution condition for JMP(004) is OFF, program execution jumps
directly to the first IME(005) in the program with the same jump number. The
instructions between JMP(004) and JME(005) are not executed, so the status
of outputs between JMP(004) and JME(005) is maintained. In block programs,
the instructions between JMP(004) and JME(005) are skipped regardless of
the status of the execution condition.

Description

Execution condition

Instructions
jumped

— - %

JMP
N

Instructions in this section are not

Instructions - executed and output status is

executed maintained. The instruction execution
time for these instructions is eliminated.
g
JME == -
N l

Because all of instructions between JMP(004) and JME(005) are skipped
when the execution condition for IMP(004) is OFF, the cycle time is reduced
by the total execution time of the skipped instructions. In contrast, NOP(000)
processing is performed for instructions between JMP0(515) and JMEOQ(516),
so the cycle time is not reduced as much with those jump instructions.

The following table compares the various jump instructions.

Item JMP(004) CJP(510) CJIPN(511) JMPO(515)
JME(005) JME(005) JME(005) JMEO(516)
Execution condition for jump OFF ON OFF OFF
Number allowed 256 total No limit
Instruction processing when jumped | Not executed. NOP(000) processing
Instruction execution time when None Same as NOP(000)
jumped instructions

Status of outputs (bits and words)
when jumped

Bits and words maintain their previous status.

Status of operating timers when
jumped

Operating timers continue timing.

Processing in block programs Always jump. Jump when ON. | Jump when OFF. | Not allowed.
Flags (JMP)
Name Label Operation
Error Flag ER ON if N is not within the specified range of 0 to 255 (0000

to OOFF hex).

ON if there is a IMP(004) in the program without a
JME(005) with the same jump number.

ON if there is a JIMP(004) in the task without a JME(005)
with the same jump number in the task.

OFF in all other cases.

Precautions

All of the outputs (bits and words) in jumped instructions retain their previous
status. Operating timers (TIM, TIMX(550), TIMH(015), TIMHX(551),
TMHH(540), and TMHHX(552)) continue timing because the PVs are updated
even when the timer instruction is not being executed.

When there are two or more JME(005) instructions with the same jump num-
ber, only the instruction with the lower address will be valid. The JME(005)
with the higher program address will be ignored.

155

Sequence Control Instructions Section 3-4

156

When JME(005) precedes JMP(004) in the program, the instructions between
JME(005) and JMP(004) will be executed repeatedly as long as the execution
condition for JIMP(004) is OFF. A Cycle Time Too Long error will occur if the
execution condition is not turned ON or END(001) is not executed within the
maximum cycle time.

JME
N

Program section A is executed
A repeatedly as long as
execution condition a is OFF.

—— uwp

N

In block programs, the instructions between JMP(004) and JME(005) are
always skipped regardless of the status of the execution condition for
JMP(004).

o
—}——- BPRG
Block program section < N
JMP &1
e]
JME &1
“|--cooo_________BEND

JMP(004) and JME(005) pairs must be in the same task because jumps
between tasks are not allowed. An error will occur if a IME(005) instruction is
not programmed in the same task as its corresponding JMP(004) instruction.

The operation of DIFU(013), DIFD(014), and differentiated instructions is not
dependent solely on the status of the execution condition when they are pro-
grammed between JMP(004) and JME(005). When DIFU(013), DIFD(014), or
a differentiated instruction is executed in an jumped section immediately after
the execution condition for the JMP(004) has gone ON, the execution condi-
tion for the DIFU(013), DIFD(014), or differentiated instruction will be com-
pared to the execution condition that existed before the jump became effective
(i.e., before the execution condition for IMP(004) went OFF).

Sequence Control Instructions Section 3-4

Examples

Basic Operation

When CIO 0.00 is OFF in the following example, the instructions between
JMP(004) and JME(005) are not executed and the outputs maintain their pre-
vious status.

When CIO 0.00 is ON in the following example, the instructions between
JMP(004) and JME(005) are executed normally.

0.00 : --------- mommm s e
l JMP_ | iCl100.00 : CIO0.00
&1 | ‘ON : OFF

. » |Normal Instructions |
, « | execution: not executed.:
! (Outputs re-

Il ' . main un-

" TiM ! + changed.)
: 5 ;
: 1 SET f :
] [L]
) ' '
5 1 CNT 5 !
) " (
: —H—,_ : L |
leehecccccnnccncacnnnacnane coeledeccccccccccchoeccccnccnees -

JME I
&1

3-4-7 CONDITIONAL JUMP: CJP(510)/CJIPN(511)

Purpose

The operation of CJP(510) is the basically the opposite of IMP(004). When
the execution condition for CIJP(510) is ON, program execution jumps directly
to the first JIME(005) in the program with the same jump number. CIJP(510)
and JME(005) are used in pairs.

The operation of CJPN(511) is almost identical to JIMP(004). When the execu-
tion condition for CJP(004) is OFF, program execution jumps directly to the
first IME(0O5) in the program with the same jump number. CJPN(511) and
JME(005) are used in pairs.

157

Sequence Control Instructions Section 3-4

Ladder Symbols

— | CJP(510)
N N: Jump number
| CJIPN(511)
N N: Jump number
Variations
Variations | Jumps when ON/Does Not Jump when OFF | CJP(510)
Immediate Refreshing Specification Not supported
Variations | Jumps when OFF/Does Not Jump when ON | CJPN(511)
Immediate Refreshing Specification Not supported
Variations | Executed Each Cycle for ON Condition JME(005)
Immediate Refreshing Specification Not supported
Applicable Program Areas
Block program areas | Step program areas | Subroutines | Interrupt tasks
OK Not allowed OK OK
Operands N: Jump Number

The jump number must be 0000 to OOFF (0 to 255 decimal).

Operand Specifications

Area N
CJP(510) | CJIPN(511) JME(005)
CIO Area CIO0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959
Timer Area TOO00O0 to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM @ DO to @ D32767
addresses in binary
Indirect DM *DO0 to *D32767
addresses in BCD
Constants #0000 to #00FF (binary) or &0 to &255 #0000 to #00FF
(binary) or &0 to
&255
Data Registers DRO to DR15 -—-
Index Registers ---
Indirect addressing |,IR0 to ,IR15
using Index Regis- | _2048 to +2047, IR0 to —2048 to +2047,
ters IR15
DRO to DR15, IR0 to IR15
Description The operation of CIP(510) and CJPN(511) differs only in the execution condi-

tion. CJP(510) jumps to the first IME(005) when the execution condition is ON
and CJPN(511) jumps to the first JIME(005) when the execution condition is
OFF

158

Section 3-4

Sequence Control Instructions

Flags

Precautions

Because the jumped instructions are not executed, the cycle time is reduced
by the total execution time of the jumped instructions.

Operation of CJP(510)

When the execution condition for CJP(510) is OFF, no jump is made and the
program is executed consecutively as written.

When the execution condition for CJP(510) is ON, program execution jumps
directly to the first IME(005) in the program with the same jump number.

Execution Execution
condition OFF condition ON
] G |----g-m--- PR N Instructions
Y jumped

N

- Instructions in this section are not
executed and output status is
maintained. The instruction execution
time for these instructions is eliminated.

Instructions
executed

L e R e
N |

Operation of CIPN(511)

When the execution condition for CJPN(511) is ON, no jump is made and the
program is executed consecutively as written.

When the execution condition for CJPN(511) is OFF, program execution
jumps directly to the first JIME(005) in the program with the same jump num-

ber.

Execution Execution
condition ON condition OFF
” CJPN |----§----- P ~ Instructions
‘ jumped
N / Jjump

executed and output status is
maintained. The instruction execution

Instructions
time for these instructions is eliminated.

1
1
1
1
‘
‘
: > Instructions in this section are not
‘
1]
|
executed !

L e R e
v |

The following table shows the flags affected by CIJP(510) and CJPN(511).
Operation

ON if there is not a JIME(005) with the same jump number

as CJP(510) or CIPN(511).

ON if N is not within the specified range of 0 to 255 (0000

to OOFF hex).

ON if there is a CJP(510) or CIPN(511) instruction in a

task without a JIME(005) with the same jump number.

OFF in all other cases.

Name Label
Error Flag ER

All of the outputs (bits and words) in jumped instructions retain their previous
status. Operating timers (TIM, TIMX(550), TIMH(015), TIMHX(551),
TMHH(540), and TMHHX(552)) continue timing be-cause the PVs are
updated even when the timer instruction is not being executed.

When there are two or more JME(005) instructions with the same jump num-
ber, only the instruction with the lower address will be valid. The JME(005)

with the higher program address will be ignored.

159

Sequence Control Instructions Section 3-4

160

When JME(005) precedes the CJP(510) or CJPN(511) instruction in the pro-
gram, the instructions in-between will be executed repeatedly as long as the
execution condition remains OFF (CJP(510)) or ON (CJPN(511)). A Cycle
Time Too Long error will occur if the jump is not completed by changing the
execution condition executing END(001) within the maximum cycle time.

The CJP(510) or CIJPN(511) instructions will operate normally in block pro-
grams.

When the execution condition for the CJP(510) is ON or the execution condi-
tion for CJPN(511) is OFF, program execution will jump directly to the JME
instruction without executing instructions between CJP(510)/CJPN(511) and
JME. No execution time will be required for these instructions and the cycle
time will thus be reduced.

When the execution condition for the JMPO is OFF, NOP processing is exe-
cuted between the JMPO and JMEOQ, requiring execution time. Therefore, the
cycle time will not be reduced.

When a CJP(510) or CIPN(511) instruction is programmed in a task, there
must be a JME(005) with the same jump number because jumps between
tasks are not allowed. An error will occur if a corresponding JME(005) instruc-
tion is not programmed in the same task.

The operation of DIFU(013), DIFD(014), and differentiated instructions is not
dependent solely on the status of the execution condition when they are pro-
grammed in a jumped program section. When DIFU(013), DIFD(014), or a dif-
ferentiated instruction is executed in an jumped section immediately after the
execution condition for the CJP(510) has gone OFF (ON for CJPN(511)), the
execution condition for the DIFU(013), DIFD(014), or differentiated instruction
will be compared to the execution condition that existed before the jump
became effective.

Sequence Control Instructions Section 3-4

Example When CIO 0.00 is ON in the following example, the instructions between
CJP(510) and JME(005) are not executed and the outputs maintain their pre-
vious status.

When CIO 0.00 is OFF in the following example, the instructions between
CJP(510) and JME(005) are executed normally.

0.00 i 0 !
—1——_ c» | icioo.00 1CI00.00 |
&1| {ON + OFF |
1 A — ST W |
=—0 i |
: ¢ Instructions | !
: ' not i |Normal !
; rexecuted. : |execution |
‘ (Outputs | !
‘ 1 i remain un- | !
: 1l TIM ichanged.) | !
E I SET b ! :
i Nt P ; |
S S Cfeaemmmen
JME l
&1

Note For CIJPN(511), the ON/OFF status of CIO 0.00 would be reversed.

3-4-8 MULTIPLE JUMP and JUMP END: JMP0(515) and JMEO(516)

Purpose When the execution condition for JIMPO(515) is OFF, all instructions from
JMPO(515) to the next JMEO(516) in the program are processed as
NOP(000). Use JMP0O(515) and JMEOQ(516) in pairs. There is no limit on the
number of pairs that can be used in the program.

Ladder Symbols

— | JMPO(515)
- | JMEO(516)
Variations
Variations | Jumps when OFF/Does Not Jump when ON | IMP0O(515)
Immediate Refreshing Specification Not supported

161

Sequence Control Instructions Section 3-4

Applicable Program Areas

Description

Precautions

162

Variations Executed Each Cycle for ON Condition JMEO(516)

Immediate Refreshing Specification Not supported

Block program areas | Step program areas | Subroutines | Interrupt tasks

Not allowed Not allowed OK OK

When the execution condition for IMP0O(515) is ON, no jump is made and the
program executed consecutively as written.

When the execution condition for JIMPO(515) is OFF, all instructions from
JMPO(515) to the next JMEO(516) in the program are processed as
NOP(000). Unlike IMP(004), CJP(510), and CJPN(511), JMP0(515) does not
use jump numbers, so these instructions can be placed anywhere in the pro-
gram.

Execution Execution
conditiona ON condition a OFF

Instructions
A)
a - \ Jumped

Instructions i
executed '

II
--------- st
l Jumped instructions are processed as

NOP(000). Instruction execution times

Execution are the same as NOP(000).

P Execution
condition b ON condition b OFF

1
A
1t
Instructions r J

executed '."\
--------- .
Instructions
jumped
Unlike JMP(004), CJP(510), and CJPN(511) which jump directly to the first
JME(005) instruction in the program, all of the instructions between
JMPO(515) and JMEO(516) are executed as NOP(000). The execution time of
the jumped instructions will be reduced, but not eliminated. The jumped
instructions themselves are not executed and their outputs (bits and words)
maintain their previous status.

Multiple pairs of IMPO(515) and JMEO(516) instructions can be used in the
program, but the pairs cannot be nested.

JMPO(515) and JMEQ(516) cannot be used in block programs.

JMPO(515) and JMEOQ(516) pairs must be in the same tasks because jumps
between tasks are not allowed.

The operation of DIFU(013), DIFD(014), and differentiated instructions is not
dependent solely on the status of the execution condition when they are pro-
grammed between JMPO0(515) and JME0(516). When DIFU(013), DIFD(014),
or a differentiated instruction is executed in an jumped section immediately
after the execution condition for the JMPO(515) has gone ON, the execution
condition for the DIFU(013), DIFD(014), or differentiated instruction will be
compared to the execution condition that existed before the jump became
effective (i.e., before the execution condition for IMPO(515) went OFF).

Sequence Control Instructions

Section 3-4

Example

When CIO 0.00 is OFF in the following example, the instructions between
JMPO(515) and JMEO(516) are processed as NOP(000) instructions and the

outputs maintain their previous status.

When CIO 0.00 is ON in the following example, the instructions between

JMPO(515) and JMEQ(516) are executed normally.

S N

fmmmbcmaaaaa

0.00 ' H
_| ECIO 0.00 ClOO0.00
'ON | OFF
:-— ———————————————————————— :-- —————————— E—J —————————— 4
Normal Instructions
: i |execution } processed
‘ : ' as
! : ' NOP(000).
i | TIM ' ! (Outputs re-
1 H ' main un-
i changed.)
= |
E 1 CNT ! P
N N I L
, I

3-4-9 FOR-NEXT LOOPS: FOR(512)/NEXT(513)
The instructions between FOR(512) and NEXT(513) are repeated a specified

Purpose

Ladder Symbols

Variations

number of times. FOR(512) and NEXT(513) are used in pairs.

| FOR(512)
N N: Number of loops
| NEXT(513)
Variations Executed Each Cycle for ON Condition FOR(512)
Executed Each Cycle for ON Condition NEXT(513)
Immediate Refreshing Specification Not supported

163

Sequence Control Instructions

Section 3-4

Applicable Program Areas

Operands

Operand Specifications

Description

164

Block program areas

Step program areas

Subroutines

Interrupt tasks

Not allowed

OK

OK

OK

N: Number of Loops

The number of loops must be 0000 to FFFF (0 to 65,535 decimal).

Area N
CIO Area CIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area AO to A959
Timer Area TOO0O0O to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary

Indirect DM addresses
in BCD

*DO to *D32767

Constants

#0000 to #FFFF (binary) or &0 to &65,535

Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

using Index Registers

—2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JIRO+(++) t0 ,IR15+(++)

~(=-) IR0 to, (- -) IR15

The instructions between FOR(512) and NEXT(513) are executed N times
and then program execution continues with the instruction after NEXT(513).
The BREAK(514) instruction can be used to cancel the loop.

If N is set to 0, the instructions between FOR(512) and NEXT(513) are pro-
cessed as NOP(000) instructions.

Loops can be used to process tables of data with a minimum amount of pro-

gramming.
FOR Repeated N times
N (_JH
'Y' ll
Repeated program section NN
‘I J'
NEXT ,)

Section 3-4

Sequence Control Instructions
FOR-NEXT loops can be nested up to 15 levels. In the example below, pro-

gram sections A, B, and C are executed as follows:
A-B->B—-C,A->B—->B—->C,andA—-B—->B—>C

— FOR __J___
&3

FOR

]

1

1

t

1

'

’

1

'

&2 K
1

'

i

I

'

]

i

t

1

i

NEXT

1
t
]
1
t
]
1
1
1
1
t
i
1
’
'
1
’
1
1
H ’
i
t
1
r
t
'
i
’
'
0
t
'
1
’
'
1
n
i

)

NEXT
|

[l

Use BREAK(514) to escape from a FOR-NEXT loop. Several BREAK(514)
instructions (the number of levels nested) are required to escape from nested
loops. The remaining instructions in the loop after BREAK(514) are processed

as NOP(000) instructions.

FOR

Escapes from
loop when
FOR

1
‘l
: ;'l/condition ais
e v N H A
v x Remaining
P ; .
ol Instructions are Breaks FOR-NEXT loop 2.
oo processed as /
Col C — BREAK

‘ NOP(000).

I
o
N

[EnY

NEXT ;
NEXT
Breaks FOR-NEXT loop 1.

——— sReax |

NEXT

Alternative Looping Methods
There are two ways to repeat a program section until a given execution condi-

tion is input.

FOR-NEXT Loop with BREAK

Start a FOR-NEXT loop with a maximum of N repetitions. Program
BREAK(514) within the loop with the desired execution condition. The loop

1.
will end before N repetitions if the execution condition is input.

1,2,3...

165

Section 3-4

Sequence Control Instructions

Flags

Precautions

Example

Note

FOR

++

2.

JME(005)-JMP(004) Loop

Program a loop with IME(005) before JIMP(004). The instructions between
JME(005) and JMP(004) will be executed repeatedly as long as the execu-
tion condition for IMP(004) is OFF. (A Cycle Time Too Long error will occur
if the execution condition is not turned ON or END(001) is not executed

within the maximum cycle time.)

Name Label Operation

Error Flag ER ON if more than 15 loops are nested.
OFF in all other cases.

Equals Flag = OFF

Negative Flag N OFF

Program FOR(512) and NEXT(513) in the same task. Execution will not be
repeated if these instructions are not in the same task.
A jump instruction such as JMP(004) may be executed within a FOR-NEXT

loop, but do not jump beyond the FOR-NEXT loop.

The following instructions cannot be used within FOR-NEXT loops:
* Block programming instructions
* MULTIPLE JUMP and JUMP END: JMP(515) and JME(516)
* STEP DEFINE and STEP START: STEP(008)/SNXT(009)

If a loop repeats in one cycle and a differentiated bit is used in the FOR-NEXT
loop, that bit will be always ON or always OFF within that loop.

In the following example, the looped program section transfers the content of
D100 to the address indicated in D200 and then increments the content of

D200 by 1.

Repeated 3 times.

|
i
i
i
| N
Dl D100 - po [&N
r ' K

MOV

R I)
| S . —

3-4-10 BREAK LOOP: BREAK(514)

Purpose

Ladder Symbol

166

Programmed in a FOR-NEXT loop to cancel the execution of the loop for a
given execution condition. The remaining instructions in the loop are pro-

cessed as NOP(000) instructions.

— | BREAK(514)

Section 3-4

Sequence Control Instructions

BREAK(514)

Variations
Variations

Executed Each Cycle for ON Condition

Not supported

Executed Once for Upward Differentiation

Not supported

Executed Once for Downward Differentiation

Not supported

Applicable Program Areas

Description

Flags

Precautions

Immediate Refreshing Specification

Subroutines | Interrupt tasks

Block program areas

Step program areas
OK

OK

Not allowed OK

Program BREAK(514) between FOR(512) and NEXT(513) to cancel the

FOR-NEXT loop when BREAK(514) is executed. When BREAK(514) is exe-
cuted, the rest of the instructions up to NEXT(513) are processed as

NOP(000).
o Condition a ON
N repetitions
FOR
N 4|
.: Repetitions
/ forced to end.
L] || S
a / J \
/ s i Processed as NOP(000).
NEXT % ;
Name Label Operation
Error Flag ER OFF
Equals Flag = OFF
Negative Flag N OFF

loops.

A BREAK(514) instruction cancels only one loop, so several BREAK(514)
instructions (the number of levels nested) are required to escape from nested

BREAK(514) can be used only in a FOR-NEXT loop.

167

Timer and Counter Instructions

Section 3-5

3-5 Timer and Counter Instructions

This section describes instructions used to define and handle timers and
counters.
Instruction Mnemonic Function code Page

TIMER TIM/TIMX ---/550 170
HIGH-SPEED TIMER TIMH/TIMHX 015/551 174
ONE-MS TIMER TMHH/TIMHHX | 540/552 178
ACCUMULATIVE TIMER TTIM/TTIMX 087/555 181
LONG TIMER TIML/TIMLX 542/553 184
MULTI-OUTPUT TIMER MTIM/MTIMX 543/554 187
COUNTER CNT/CNTX ---/546 193
REVERSIBLE COUNTER CNTR/CNTRX |012/548 196
RESET TIMER/COUNTER CNR/CNRX 545/547 200

Refresh Methods for Timer/Counter PV

168

m Overview

The refresh method for present values timer and counter instructions can be
set to either BCD or binary for CP-series CPU Units.

Using binary data instead of BCD allows the SV range for timers and counter
to be increased from 0 to 9999 to 0 to 65535. It also enables using binary data
calculated with other instructions directly as a timer/counter SV. The refresh
method is valid even when setting an SV indirectly (i.e., using the contents of
memory word). (That is, the contents of the addressed word is taken as either
BCD or binary data according to the refresh method that is set.)

Refer to the CP Series CP1H Operation Manual for details on refresh meth-

ods.

m Applicable Instructions

Classification Instruction Mnemonic
BCD Binary
Timer/counter TIMER TIM TIMX(550)
instructions HIGH-SPEED TIMER TIMH(015) | TIMHX(551)
ONE-MS TIMER TMHH(540) | TMHHX(552)
ACCUMULATIVE TIMER TTIM(087) | TTIMX(555)
LONG TIMER TIML(542) | TIMLX(553)
MULTI-OUTPUT TIMER MTIM(543) | MTIMX(554)
COUNTER CNT CNTX(546)
REVERSIBLE COUNTER CNTR(012) |CNTRX(548)
RESET TIMER/COUNTER CNR(545) | CNRX(547)
Block programming | TIMER WAIT TIMW(813) | TIMWX(816)
instructions HIGH-SPEED TIMER WAIT | TMHW(815) | TMHWX(817)
COUNTER WAIT CNTW(814) | CNTWX(818)

Timer and Counter Instructions

Section 3-5

Timer Operation

for TO00O to TOO015.
(2) TIMH(015)/TIMHX(551) PVs are refreshed at execution for all times and

also every 10 ms for TO00O to TO015.

Basic Timer The following table shows the basic specifications of the timers.
Specifications

Item TIM/TIMX(550) | TIMH(015)/ TMHH(540)/ TTIM(087)/ TIML(542)/ MTIM(543)/

TIMHX(551) TMHHX(552) TTIMX(555) TIMLX(553) MTIMX(554)
Timing Decrementing |Decrementing |Decrementing |Incrementing Decrementing Incrementing
method
Timing units {0.1s 0.01s 0.001 s 0.1s 0.1s 0.1s
Max. SV TIM: 999.9 s TIMH: 99.99s |TMHH: 9.999s |TTIM: 999.9s |TIML: 115days |MTIM: 999.9 s
TIMX: 6,553.5 | TIMHX: TMHHX: TTIMX: TIMLX: MTIMX:
s 655.35 s 65.535 s 6,553.5s 49,710 days 6,553.5s
Outputs/ 1 1 1 1 1 8
instruction
Timer num- | Used Used Used Used Not used Not used
bers
Comp. flag At execution At execution By interrupt At execution At execution At execution
refreshing every 1 ms
Timer PV See note 1. See note 2. Every 1 ms At execution At execution At execution
refreshing
Value | Comp. | OFF OFF OFF OFF OFF OFF
after |flags
reset |pys |sv Y, Y, 0 Y, 0
Note (1) TIM PVs are refreshed at execution for all times and also every 100 ms

The following table shows the effects of operating and programming condi-
tions on the operation of the timers.

Completion Flag = OFF

Item TIM/ TIMH(015)/ | TMHH(540)/ | TTIM(087)/ TIML(542)/ MTIM(543)/
TIMX(550) | TIMHX(551) | TMHHX(552) | TTIMX(555) | TIMLX(553) MTIMX(554)
Operating mode change |PV =0
Completion Flag = OFF
Power interrupt/reset PV =0

CNRX(547)

Execution of CNR(545)/

Binary: PV = FFFF, Completion Flag = OFF
BCD: PV = FFFF or 9999, Completion Flag = OFF

Not applicable

Not applicable

gram section

Operation in jumped pro-

(JMP(004)-JME(005))

Operating timers continue timing.

Timer status is maintained.

Operation in interlocked | PV =SV Timer status | PV =SV Timer status
program section Completion Flag = OFF maintained. |Comp. flag = | maintained.
(IL(002)-1LC(003)) OFF

Forced Comp. flags |ON

set PVs Set to 0.

Forced Comp. flags | OFF

reset PVs Reset to SV. Set to 0.

169

Timer and Counter Instructions Section 3-5

3-5-1 TIMER: TIM/TIMX(550)

TIM or TIMX(550) operates a decrementing timer with units of 0.1-s. The set-
ting range for the set value (SV) is 0 to 999.9 s for TIM and 0 to 6,553.5 s for
TIMX(550). The timer accuracy is 0 to 0.01 s.

Purpose

Ladder Symbol

PV Symbol Operands
refresh
method
BCD N: 0000 to 4095 (decimal)
TIM S: #0000 to #9999 (BCD)
N N: Timer number
S S: Set value
Binary N: 00000 to 4095 (decimal)
| TIMX(550) S: &0 to &65535 (decimal)
#0000 to #FFFF (hex)
N N: Timer number
S S: Set value
Variations
Variations Executed Each Cycle for ON Condition TIM/TIMX(550)
Executed Once for Upward Differentiation Not supported.
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.
Applicable Program Areas
Block program areas | Step program areas | Subroutines | Interrupt tasks
Not allowed OK OK Not allowed

Operands

Operand Specifications

170

N: Timer Number

The timer number must be between 0000 and 4095 (decimal).

S: Set Value

The set value must be between #0000 and 9999 (BCD).
(If the set value is set to #0000, the Completion Flag will be turned ON when
TIM/TIMX(550) is executed.)

Area N S
CIO Area CIO 0to CIO 6143
Work Area - WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959
Timer Area 0000 to 4095 (decimal) T0OO00O0 to T4095
Counter Area --- C0000 to C4095
DM Area DO to D32767
Indirect DM addresses | --- @ DO to @ D32767
in binary
Indirect DM addresses | --- *DO to *D32767
in BCD

Timer and Counter Instructions Section 3-5

Description

Flags

Area N S

Constants BCD:
#0000 to 9999 (BCD)
“&" cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers DRO to DR15
Index Registers --- -

Indirect addressing ,IRO to ,IR15

using Index Registers | _2048 to +2047 ,IR0 to —2048 to +2047 IR15
DRO to DR15, IR0 to IR15

When the timer input is OFF, the timer specified by N is reset, i.e., the timer’s
PV is reset to the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TIM/TIMX(550) starts decrement-
ing the PV. The PV will continue timing down as long as the timer input
remains ON and the timer's Completion Flag will be turned ON when the PV
reaches 0000.

The status of the timer's PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer's PV must be changed to a non-zero value (by
MOV(021), for example).

' : ON :
Timer input g

Timer PV 0 SV ¥

Completion ©N
Flag OFF

The following timing chart shows the behavior of the timer's PV and Comple-
tion Flag when the timer input is turned OFF before the timer times out.

Timer input ON

OFF
Timer PV SV
0 ‘ ‘
Completion ON
Flag OFF
Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a timer.
ON if in BCD mode and S does not contain BCD data.
OFF in all other cases.

Equals Flag = OFF or unchanged

Negative Flag N OFF or unchanged

171

Timer and Counter Instructions Section 3-5

Precautions Timer numbers are shared by the TIM, TIMX(550), TIMH(015), TIMHX(551),
TMHH(540), TMHHX(552), TTIM(087), TTIMX(555), TIMW(813),
TIMWX(816), TMHW(815), and TMHWX(817) instructions. If two timers share
the same timer number, but are not used simultaneously, a duplication error
will be generated when the program is checked, but the timers will operate
normally. Timers which share the same timer number will not operate properly
if they are used simultaneously.
Timers created with timer numbers 16 to 4095 will not operate properly when

the CPU Unit cycle time exceeds 100 ms. Use timer numbers 0 to 15 when
the cycle time is longer than 100 ms.

The present value of timers programmed with timer numbers 0 to 15 will be
updated even when the timer is on standby. The present value of timers pro-
grammed with timer numbers 16 to 4095 will be held when the timer is on
standby.

Timers will be reset or paused in the following cases. (When a timer is reset,
its PV is reset to the SV and its Completion Flag is turned OFF.))

Condition PV Completion Flag

Operating mode changed from RUN or | 0000 OFF
MONITOR mode to PROGRAM mode

or vice versa.l

Power supply interrupted and reset? | 0000 OFF
Execution of CNR(545)/CNRX(547), BCD: 9999 OFF
the RESET TIMER/COUNTER Binary: FFFF

instructions®

Qperation in interlocked program sec- |Resetto SV. OFF
tion

(IL(002)-I1LC(003))

Operation in jumped program section | PV continues decre- | Retains previous sta-
(JMP(004)-JME(005)) menting. tus.

Note (1) If the IOM Hold Bit (A500.12) has been turned ON, the status of timer
Completion Flags and PVs will be maintained when the operating mode
is changed.

(2) If the IOM Hold Bit (A500.12) has been turned ON and the status of the
IOM Hold Bit itself is protected in the PLC Setup, the status of timer Com-
pletion Flags and PVs will be maintained even when the power is inter-
rupted.

(3) The PV will be set to the SV when TIM/TIMX(550) is executed.

When TIM/TIMX(550) is in a program section between 1L(002) and ILC(003)
and the program section is interlocked, the PV will be reset to the SV and the
Completion Flag will be turned OFF.

When an operating TIM/TIMX(550) timer created with a timer number
between 0 and 15 is in a jumped program section (JMP(004), CIMP(510),
CJPN(511), JME(005)), the timer's PV will continue timing. The jumped TIM/
TIMX(550) instruction will not be executed, but the PV will be refreshed each
cycle after all tasks have been executed.

When a TIM/TIMX(550) timer is forced set, its Completion Flag will be turned
ON and its PV will be set to 0. When a TIM/TIMX(550) timer is forced reset, its
Completion Flag will be turned OFF and its PV will be reset to the SV.

The operation of the = Flag and N Flag depends on the model of the CPU
Unit. Refer to Flags, above, for details.

172

Timer and Counter Instructions Section 3-5

The timer's Completion Flag is refreshed only when TIM/TIMX(550) is exe-
cuted, so a delay of up to one cycle may be required for the Completion Flag
to be turned ON after the timer times out.

If online editing is used to convert a timer to another kind of timer with the
same timer number (such as TIM/TIMX(550) < TIMH(015)/TIMHX(551) or
TIM/TIMX(550) <> TMHH(540)/TMHHX(552)), be sure to reset the Comple-
tion Flag. The timer will not operate properly unless the Completion Flag is
reset.

A TIM/TIMX(550) instruction’s PV and Completion Flag can be refreshed in
the following ways depending on the timer number that is used.

Timers Created with Timer Numbers 0000 to 2047
Execution of TIM/ The PV is updated every time that TIM/TIMX(550) is exe-
TIMX(550) cuted.

The Completion Flag is turned ON if the PV is 0000.
The Completion Flag is turned OFF if the PV is not 0000.

100-ms interval refreshing | If the cycle time exceeds 100 ms, the timer’'s PV is
updated every 100 ms.

Timers Created with Timer Numbers T0016 to T4095

Execution of TIM The PV is updated every time that TIM is executed.

The Completion Flag is turned ON if the PV is 0.
The Completion Flag is turned OFF if the PV is not 0.

Timers are reset (PV = SV, Completion Flag OFF) by power interruptions
unless the IOM Hold Bit (A500.12) is ON and the bit is protected in the PLC
Setup. It is also possible use a clock pulse bit and a counter instruction to pro-
gram a timer that will retain its PV in the event of a power interruption, as
shown in the following diagram.

Execution 1-s clock

condition ulse bit)
P Count input

Il I
Il I CNT
. N
Reset input s
I

173

Timer and Counter Instructions

Section 3-5

Example

When timer input CIO 0.00 goes from OFF to ON in the following example, the
timer PV will begin counting down from the SV. Timer Completion Flag TO000
will be turned ON when the PV reaches 0000.
When CIO 0.00 goes OFF, the timer PV will be reset to the SV and the Com-
pletion Flag will be turned OFF.

- 0.00

il TIM

0000

#100:

Timer input
ClO 0.00

Timer PV
TO000

Timer
Completion
Flag

TO000

ON

OFF

ON

OFF

3-5-2 HIGH-SPEED TIMER: TIMH(015)/TIMHX(551)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

174

TIMH(015)/TIMHX(551) operates a decrementing timer with units of 10-ms.
The setting range for the set value (SV) is 0 to 99.99 s for TIMH(015) and 0O to
655.35 s for TIMHX(551). The timer accuracy is 0 to 0.01 s.

PV Symbol Operands
refresh
method
BCD N: 0000 to 4095 (decimal)
TIMH(015) S: #0000 to #9999 (BCD)
N N: Timer number
S S: Set value
Binary N: 00000 to 4095 (decimal)
| TIMHX(551) S: &0 to &65535 (decimal)
) #0000 to #FFFF (hex)
N N: Timer number
S S: Set value
Variations Executed Each Cycle for ON Condition TIMH(015)/
TIMHX(551)
Executed Once for Upward Differentiation Not supported.
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Block program areas

Step program areas

Subroutines

Interrupt tasks

Not allowed

OK

OK

Not allowed

Timer and Counter Instructions Section 3-5

Operands N: Timer Number
The timer number must be between 0000 and 4095 (decimal).

S: Set Value
The set value must be between #0000 and 9999 in BCD mode.

Operand Specifications

Area N S

ClO Area CIO 0to CIO 6143

Work Area --- WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area A0 to A959

Timer Area 0000 to 4095 (decimal) T0000 to T4095

Counter Area --- C0000 to C4095

DM Area DO to D32767

Indirect DM addresses | --- @ DO to @ D32767

in binary

Indirect DM addresses | --- *DO to *D32767

in BCD

Constants BCD:
#0000 to 9999 (BCD)
“&" cannot be used.

Binary:

&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers DRO to DR15

Index Registers

Indirect addressing ,IRO to ,IR15

using Index Registers | _p048 to +2047 ,IR0 to —2048 to +2047 ,IR15

DRO to DR15, IR0 to IR15

Description When the timer input is OFF, the timer specified by N is reset, i.e., the timer’s
PV is reset to the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TIMH(015)/TIMHX(551) starts
decrementing the PV. The PV will continue timing down as long as the timer
input remains ON and the timer's Completion Flag will be turned ON when the
PV reaches 0000.

The status of the timer's PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer's PV must be changed to a non-zero value (by
MOV(021), for example).

)) ON
Timer input QFF

Timer PV

Completion ©ON
Flag OFF

175

Timer and Counter Instructions Section 3-5

The following timing chart shows the behavior of the timer's PV and Comple-
tion Flag when the timer input is turned OFF before the timer times out.

. . ON
Timer input 5p

Timer PV SV :\ : T~ :
0

Completion ON

Flag OFF
Flags
Name Label Operation
Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a timer.
ON if in BCD mode and S does not contain BCD data.
OFF in all other cases.
Equals Flag = OFF or unchanged
Negative Flag N OFF or unchanged
Precautions Timer numbers are shared by the TIM, TIMX(550), TIMH(015), TIMHX(551),

TMHH(540), TMHHX(552), TTIM(087), TTIMX(555), TIMW(813),
TIMWX(816), TMHW(815), and TMHWX(817) instructions. If two timers share
the same timer number, but are not used simultaneously, a duplication error
will be generated when the program is checked, but the timers will operate
normally. Timers which share the same timer number will not operate properly
if they are used simultaneously.

Timers created with timer numbers 16 to 4095 will not operate properly when
the CPU Unit cycle time exceeds 100 ms. Use timer numbers 0 to 15 when
the cycle time is longer than 100 ms.

TIMH(015)/TIMHX(551) timers created with timer numbers 0 to 15 are
refreshed every 10 ms. Use these timer numbers when the PV is being refer-
enced in the user program.

The present value of timers programmed with timer numbers 0 to 15 will be
updated even when the timer is on standby. The present value of timers pro-
grammed with timer numbers 16 to 4095 will be held when the timer is on
standby.

The operation of the = Flag and N Flag depends on the model of the CPU
Unit. Refer to Flags, above, for details.

Timers will be reset or paused in the following cases. (When a timer is reset,
its PV is reset to the SV and its Completion Flag is turned OFF.))

Condition PV Completion Flag
Operating mode changed from RUN or 0000 OFF
MONITOR mode to PROGRAM mode or
vice versa.!
Power supply interrupted and reset? 0000 OFF

Execution of CNR(545)/CNRX(547), the | BCD: 9999 OFF
RESET TIMER/COUNTER instructions® | Binary: FFFF

Operation in interlocked program section | Resetto SV. OFF
(IL(002)-ILC(003))

Operation in jumped program section PV continues | Retains previous status.
(JMP(004)-JME(005)) decrementing.

176

Timer and Counter Instructions Section 3-5

Note (1) If the IOM Hold Bit (A500.12) has been turned ON, the status of timer
Completion Flags and PVs will be maintained when the operating mode
is changed.

(2) If the IOM Hold Bit (A500.12) has been turned ON and the status of the
IOM Hold Bit itself is protected in the PLC Setup, the status of timer Com-
pletion Flags and PVs will be maintained even when the power is inter-
rupted.

(3) The PV will be set to the SV when TIMH(015)/TIMHX(551) is executed.

When an operating TIMH(015)/TIMHX(551) timer created with a timer number
between 0 and 15 is in a jumped program section (JMP(004), CIMP(510),
CJPN(511), JME(005)), the timer's PV will continue timing. (The jumped
TIMH(015)/TIMHX(551) instruction will not be executed, but the PV will be
refreshed every 10 ms and each cycle after all tasks have been executed.)

When TIMH(015)/TIMHX(551) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will be reset to the SV
and the Completion Flag will be turned OFF.

When a TIMH(015)/TIMHX(551) timer is forced set, its Completion Flag will
be turned ON and its PV will be set to 0. When a TIMH(015)/TIMHX(551)
timer is forced reset, its Completion Flag will be turned OFF and its PV will be
reset to the SV.

The operation of the = Flag and N Flag depends or the model of CPU Unit.
Refer to Flags for detalils.

The timer's Completion Flag is refreshed only when TIMH(015)/TIMHX(551)
is executed, so a delay of up to one cycle may be required for the Completion
Flag to be turned ON after the timer times out.

If online editing is used to convert a timer to another kind of timer with the
same timer number (such as TIMH(015)/TIMHX(551) < TIM/TIMX(550) or
TIMH(015)/TIMHX(551) <> TMHH(540)/TMHHX(552)), be sure to reset the
Completion Flag. The timer will not operate properly unless the Completion
Flag is reset.

A TIMH(015)/TIMHX(551) instruction’s PV and Completion Flag can be
refreshed in the following ways depending on the timer number that is used.

Timers Created with Timer Numbers T0000 to T0015

Execution of The Completion Flag is turned ON if the PV is 0000.
TIMH(015)/ The Completion Flag is turned OFF if the PV is not 0000.
TIMHX(551)

10-ms interval The timer's PV is updated every 10 ms.

refreshing

Timers Created with Timer Numbers T0016 to T4095

Execution of The PV is updated every time that TIMH(015) is executed.
TIMH(015)/ The Completion Flag is turned ON if the PV is 0.
TIMHX(551) The Completion Flag is turned OFF if the PV is not 0.

177

Timer and Counter Instructions Section 3-5

Example

When timer input CIO 0.00 goes from OFF to ON in the following example, the
timer PV will begin counting down from the SV (#0064 = 100 = 1.00 s). The
Timer Completion Flag, TO000, will be turned ON when the PV reaches 0000.
When CIO 0.00 goes OFF, the timer PV will be reset to the SV and the Com-
pletion Flag will be turned OFF.

Timer input
ON ¥
ClO 0.00 :
TIMH OFF ___'
oooo} THEEPV 40100 100 »
#0100 (1.00s) o | .

Timer Completion
Flag ON
TO000 OFF

3-5-3 ONE-MS TIMER: TMHH(540)/TMHHX(552)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

178

TMHH(540)/TMHHX(552) operates a decrementing timer with units of 1-ms.
The setting range for the set value (SV) is 0 to 9.999 s for TMHH(540) and 0
to 65.535 for TMHHX(552). The timer accuracy is —0.001 to 0 s.

PV Symbol Operands
refresh
method
BCD N: 0000 to 15 (decimal)
TMHH(540) S: #0000 to #9999 (BCD)
N N: Timer number
S S: Set value
Binary N: 00000 to 15 (decimal)
— | TMHHX(552) S: &0 to &65535 (decimal)
#0000 to #FFFF (hex)
N N: Timer number
S S: Set value
Variations Executed Each Cycle for ON Condition TMHH(540)/
TMHHX(552)
Executed Once for Upward Differentiation Not supported.
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Block program areas | Step program areas | Subroutines | Interrupt tasks

Not allowed OK OK Not allowed

N: Timer Number
The timer number must be between 0000 and 0015 (decimal).

S: Set Value
The set value must be between #0000 and 9999 (BCD).

Timer and Counter Instructions Section 3-5
Operand Specifications
Area N S

ClO Area ClO0to ClO 6143

Work Area --- WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area A0 to A959

Timer Area 0000 to 0015 (decimal) T0O000 to T4095

Counter Area --- C0000 to C4095

DM Area DO to D32767

Indirect DM addresses | --- @ DO to @ D32767

in binary

Indirect DM addresses | --- *D0 to *D32767

in BCD

Constants BCD:
#0000 to 9999 (BCD)
“&" cannot be used.

Binary:

&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DRO to DR15

Index Registers

Description

Flags

Precautions

Indirect addressing ,IRO to ,IR15
using Index Registers | _p048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

When the timer input is OFF, the timer specified by N is reset, i.e., the timer’'s
PV is reset to the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TMHH(540)/ TMHHX(552) starts
decrementing the PV. The PV will continue timing down as long as the timer
input remains ON and the timer's Completion Flag will be turned ON when the
PV reaches 0000.

The status of the timer's PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer's PV must be changed to a non-zero value (by
MOV(021), for example).

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a timer.
ON if in BCD mode and S does not contain BCD data.
OFF in all other cases.

Equals Flag = OFF or unchanged

Negative Flag N OFF or unchanged

Timer numbers are shared by the TIM, TIMX(550), TIMH(015), TIMHX(551),
TMHH(540), TMHHX(552), TTIM(087), TTIMX(555), TIMW(813),
TIMWX(816), TMHW(815), and TMHWX(817) instructions. If two timers share
the same timer number, but are not used simultaneously, a duplication error
will be generated when the program is checked, but the timers will operate
normally. Timers which share the same timer number will not operate properly
if they are used simultaneously.

179

Timer and Counter Instructions Section 3-5

The Completion Flag is updated only when TMHH(540)/TMHHX(552) is exe-
cuted. The Completion Flag can thus be delayed by up to one cycle time from
the actual set value.

The present value of timers programmed with timer numbers 0000 to 2047 will
be updated even when the timer is on standby. The present value of timers
programmed with timer numbers 2048 to 4095 will be held when the timer is
on standby.

Timers will be reset or paused in the following cases. (When a timer is reset,
its PV is reset to the SV and its Completion Flag is turned OFF.)

Condition PV Completion Flag
Operating mode changed from RUN or 0000 OFF
MONITOR mode to PROGRAM mode or
vice versa.!
Power supply interrupted and reset? 0000 OFF

Execution of CNR(545)/CNRX(547), the |BCD: 9999 | OFF
RESET TIMER/COUNTER instructions® | Binary: FFFF

Operation in interlocked program section |Resetto SV. |OFF
(IL(002)—-ILC(003))

Operation in jumped program section PV continues | Retains previous status.
(JMP(004)-JME(005)) decrement-
ing.

Note (1) If the IOM Hold Bit (A500.12) has been turned ON, the status of timer
Completion Flags and PVs will be maintained when the operating mode
is changed.

(2) If the IOM Hold Bit (A500.12) has been turned ON and the status of the
IOM Hold Bit itself is protected in the PLC Setup, the status of timer Com-
pletion Flags and PVs will be maintained even when the power is inter-
rupted.

(3) The PV will be set to the SV when TMHH(540)/ TMHHX(552) is executed.

When an operating TMHH(540)/TMHHX(552) timer is in a jumped program
section (JMP(004), CIMP(510), CJPN(511), JME(005)), the timer's PV will
continue timing. (The jumped TMHH(540)/TMHHX(552) instruction will not be
executed, but the PV will be refreshed every 1 ms.)

When TMHH(540)/TMHHX(552) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will be reset to the SV
and the Completion Flag will be turned OFF.

When a TMHH(540)/TMHHX(552) timer is forced set, its Completion Flag will
be turned ON and its PV will be set to 0000. When a TMHH(540)/
TMHHX(552) timer is forced reset, its Completion Flag will be turned OFF and
its PV will be reset to the SV.

The operation of the = Flag and N Flag depends on the model of the CPU
Unit. Refer to Flags, above, for details.

If online editing is used to convert a timer to another kind of timer with the
same timer number (such as TMHH(540)/TMHHX(552) <> TIM/TIMX(550) or
TMHH(540)/TMHHX(552) <> TIMH(015)/TIMHX(551)), be sure to reset the
Completion Flag. The timer will not operate properly unless the Completion
Flag is reset.

180

Timer and Counter Instructions

Section 3-5

A TMHH(540)/TMHHX(552) instruction's PV and Completion Flag are
refreshed as shown in the following table.

Execution of
TMHH(540)/
TMHHX(552)

The Completion Flag is turned ON if the PV is 0000.
The Completion Flag is turned OFF if the PV is not 0000.

1-ms interval refreshing

The timer’s PV is updated every 1 ms.

3-5-4 ACCUMULATIVE TIMER: TTIM(087)/TTIMX(555)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

Operand Specifications

TTIM(087)/TTIMX(555) operates an incrementing timer with units of 0.1-s.
The setting range for the set value (SV) is 0 to 999.9 s for TTIM(087) and 0O to
6,553.5 s for TTIMX(555). The timer accuracy is —-0.01to 0 s.

PV Symbol Operands
refresh
method
BCD)) : 0000 to 15
Timer input —{ TTIM(087) (decimal)
) : #0000 to #9999
N N: Timer number (BCD)
S S: Set value
Reset input 1
Binary i . : 00000 to 15
Timer input — TTIMX(555) (decimal)
S: &0 to &65535
N N: Timer number (decimal)
#0000 to #FFFF
S S: Set value (hex)
Reset input 1
Variations Executed Each Cycle for ON Condition TTIM(087)/
TTIMX(555)
Executed Once for Upward Differentiation Not supported.
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Block program areas

Step program areas

Subroutines

Interrupt tasks

Not allowed OK OK Not allowed
N: Timer Number
The timer number must be between 0000 to 4095 (decimal).
S: Set Value
The set value must be between #0000 and 9999 (BCD).

Area N S
ClO Area CIO 0 to CIO 6143
Work Area - WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959
Timer Area 0000 to 4095 (decimal) TOO00O to T4095

181

Timer and Counter Instructions Section 3-5

Description

Flags

Precautions

182

Area N S

Counter Area C0000 to C4095

DM Area DO to D32767

Indirect DM addresses | --- @ DOto @ D32767

in binary

Indirect DM addresses | --- *D0 to *D32767

in BCD

Constants BCD:
#0000 to 9999 (BCD)
“&" cannot be used.

Binary:

&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DRO to DR15

Index Registers --- ---

Indirect addressing ,IRO to ,IR15

using Index Registers | _>048 to +2047 ,IR0 to —2048 to +2047 ,IR15

DRO to DR15, IR0 to IR15

When the timer input is ON, TTIM(087)/TTIMX(555) increments the PV. When
the timer input goes OFF, the timer will stop incrementing the PV, but the PV
will retain its value. The PV will resume timing when the timer input goes ON
again. The timer's Completion Flag will be turned ON when the PV reaches
the SV.

The status of the timer's PV and Completion Flag will be maintained after the
timer times out. There are three ways to restart the timer: the timer's PV can
be changed to a non-zero value (by MOV(021), for example), the reset input
can be turned ON, or CNR(545)/CNRX(547) can be executed.

Timer input

3
3|
3
3|
2l

Timer PV

— Timing resumes.

— PV maintained.

Completion o
Flag OFF

. ON
Reset input opp

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a timer.

ON if in BCD mode and S does not contain BCD data.
OFF in all other cases.

Timer numbers are shared by the TIM, TIMX(550), TIMH(015), TIMHX(551),
TMHH(540), TMHHX(552), TTIM(087), TTIMX(555), TIMW(813),
TIMWX(816), TMHW(815), and TMHWX(817) instructions. If two timers share
the same timer number, but are not used simultaneously, a duplication error
will be generated when the program is checked, but the timers will operate
normally. Timers which share the same timer number will not operate properly
if they are used simultaneously.

Timer and Counter Instructions Section 3-5

Example

Note

Timers will be reset or paused in the following cases. (When a TTIM(087)/
TTIMX(555) timer is reset, its PV is reset to 0000 and its Completion Flag is
turned OFF)

Condition PV Completion Flag
Operating mode changed from RUN or | 0000 OFF
MONITOR mode to PROGRAM mode or
vice versa.t
Power supply interrupted and reset? 0000 OFF

Execution of CNR(545)/CNRX(547), the |BCD: 9999 |OFF
RESET TIMER/COUNTER instructions® | Binary: FFFF

Operation in interlocked program section | Retains previ- | Retains previous status.

(IL(002)-ILC(003)) ous status.
Operation in jumped program section Retains previ- | Retains previous status.
(JMP(004)-JME(005)) ous status.

(1) If the IOM Hold Bit (A500.12) has been turned ON, the status of timer
Completion Flags and PVs will be maintained when the operating mode
is changed.

(2) If the IOM Hold Bit (A500.12) has been turned ON and the status of the
IOM Hold Bit itself is protected in the PLC Setup, the status of timer Com-
pletion Flags and PVs will be maintained even when the power is inter-
rupted.

(3) The PV will be set to the SV when TTIM(087)/TTIMX(555) is executed.

When TTIM(087)/TTIMX(555) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will retain its previous
value (it will not be reset). Be sure to take this fact into account when
TTIM(087)/TTIMX(555) is programmed between IL(002) and ILC(003).

When an operating TTIM(087)/TTIMX(555) timer is in a program section
between JMP(004) and JME(005) and the program section is jumped, the PV
will retain its previous value. Be sure to take this fact into account when
TTIM(087)/TTIMX(555) is programmed between JMP(004) and JME(005).

When a TTIM(087)/TTIMX(555) timer is forced set, its Completion Flag will be
turned ON and its PV will be reset to 0000. When a TTIM(087)/TTIMX(555)
timer is forced reset, its Completion Flag will be turned OFF and its PV will be
reset to 0000. The forced set and forced reset operations take priority over the
status of the timer and reset inputs.

The timer's PV is refreshed only when TTIM(087)/TTIMX(555) is executed, so
the timer will not operate properly when the cycle time exceeds 100 ms
because the timer increments in 100-ms units.

The timer's Completion Flag is refreshed only when TTIM(087)/TTIMX(555) is
executed, so a delay of up to one cycle may be required for the Completion
Flag to be turned ON after the timer times out.

Typical timers such as TIM/TIMX(550) are decrementing counters and the PV
shows the time remaining until the timer times out. The PV of TTIM(087)/
TTIMX(555) shows how much time has elapsed, so the PV can be used
unchanged in many calculations and display outputs.

When timer input CIO 0.00 is ON in the following example, the timer PV will
begin counting up from 0. Timer Completion Flag TO001 will be turned ON
when the PV reaches the SV.

If the reset input is turned ON, the timer PV will be reset to 0000 and the Com-
pletion Flag (T0001) will be turned OFF. (Usually the reset input is turned ON
to reset the timer and then the timer input is turned ON to start timing.)

183

Timer and Counter Instructions Section 3-5

Timer input
CIlO 0.00

Timer PV
TO001

Timer Completion 0

Flag
TO001

Reset input
ClO 0.01

If the timer input is turned OFF before the SV is reached, the timer will stop
timing but the PV will be maintained. The timer will resume from its previous
PV when the timer input is turned ON again.

0.00

1 TTIM

0001

_o|,01 |— #100

ON
OFF

- Timing resumes.

PV maintained.

ON
OFF

ON
OFF

3-5-5 LONG TIMER: TIML(542)/TIMLX(553)

Purpose

Ladder Symbol

Variations

184

TIML(542)/TIMLX(553) operates a decrementing timer with units of 0.1 s that
can time up to 115 days for TIML(542) and 4,971 days for TIMLX(543). The
timer accuracy is 0 to —0.01 s.

BCD
| TIML(542)
D1 D1: Completion Flag
D2 D2: PV word
S S: SV word
Binary
| TIMLX(543)
D1 D1: Completion Flag
D2 D2: PV word
S S: SV word
Variations Executed Each Cycle for ON Condition TIML(542)/
TIMLX(553)
Executed Once for Upward Differentiation Not supported.
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Timer and Counter Instructions Section 3-5

Applicable Program Areas

Operands

Operand Specifications

Block program areas | Step program areas | Subroutines | Interrupt tasks
Not allowed OK OK Not allowed

D1: Completion Flag
Bit 0 of D1 acts as the Completion Flag for TIML(542)/TIMLX(553).

15 0
D1 |]

L Do not use. L

Completion Flag

D2: PV Word

D2+1 and D2 contain the 8-digit binary or BCD PV. (D2 and D2+1 must be in
the same data area.) The PV can range from #00000000 to #99999999 for
TIML(542) and &00000000 to &4294967295 (decimal) or #00000000 to
#FFFFFFFF (hexadecimal) for TIMLX(553).

D2 D2+1 D2
I ' | | i |

S: SV Word

S+1 and S contain the 8-digit binary or BCD SV. (S and S+1 must be in the
same data area.) The SV must be between #00000000 to #99999999 for
TIML(542) and &00000000 to &4294967294 (decimal) or #00000000 to
#FFFFFFFF (hexadecimal) for TIMLX(553).

S S+1 S
I 5 | | ; |
Area D1 D2 S
CIO Area ClO0to CIO 0to CIO 6142
ClO 6143
Work Area WO to W511 WO to W510
Holding Bit Area HO to H511 HO to H510
Auxiliary Bit Area A448 to A959 A448 to A958 AO to A958
Timer Area --- - TO0O0O0 to T4094
Counter Area C0000 to C4094
DM Area DO to D32767 DO to D32766
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants BCD:

#00000000 to
99999999 (BCD)
“&" cannot be
used.

Binary:
&00000000 to
&4294967295
(decimal) or
#00000000 to
#FFFFFFFF (hex)

Data Registers

185

Timer and Counter Instructions Section 3-5

Description

Flags

Precautions

186

Area D1 D2 | S
Index Registers
Indirect addressing ,IRO to ,IR15

using Index Registers | _o048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

TIML(542)/TIMLX(553) is a decrementing ON-delay timer with units of 0.1-s
that uses an 8-digit SV and an 8-digit PV.

When the timer input is OFF, the timer is reset, i.e., the timer's PV is reset to
the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TIML(542)/TIMLX(553) starts
decrementing the PV in D2+1 and D2. The PV will continue timing down as
long as the timer input remains ON and the timer's Completion Flag will be
turned ON when the PV reaches 0000 0000.

The status of the timer's PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer's PV must be changed to a non-zero value (by
MOV(021), for example).

Timer input

Timer PV

Completion Flag ON
(Bit 00 of D1) OFF

Name Label Operation

Error Flag ER ON if BCD was specified and the PV contained in D2+1
and D2 is not BCD.

ON if the SV contained in S+1 and S is not BCD.
OFF in all other cases.

Unlike most timers, TIML(542)/TIMLX(553) does not use a timer number.
(Timer area PV refreshing is not performed for TIML(542)/TIMLX(553).)
Since the Completion Flag for TIML(542)/TIMLX(553) is in a data area it can
be forced set or forced reset like other bits, but the PV will not change.

The timer's PV is refreshed only when TIML(542)/TIMLX(553) is executed, so
the timer will not operate properly when the cycle time exceeds 100 ms
because the timer increments in 100-ms units.

The timer's Completion Flag is refreshed only when TIML(542)/TIMLX(553) is
executed, so a delay of up to one cycle may be required for the Completion
Flag to be turned ON after the timer times out.

When TIML(542)/TIMLX(553) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will be reset to the SV
and the Completion Flag will be turned OFF.

When an operating TIML(542)/TIMLX(553) timer is in a program section
between JMP(004) and JME(005) and the program section is jumped, the PV
will retain its previous value. Be sure to take this fact into account when
TIML(542)/TIMLX(553) is programmed between JMP(004) and JME(005).

Timer and Counter Instructions

Section 3-5

Example
0.00
—l
D1 200
p2| D100
s{| D200

Be sure that the words specified for the Completion Flag and PV (D1, D2, and
D2+1) are not used in other instructions. If these words are affected by other
instructions, the timer might not time out properly.

When timer input CIO 0.00 is ON in the following example, the timer PV (in
D101 and D100) will be set to the SV (in D201 and D200) and the PV will
begin counting down. The timer Completion Flag (CIO 200.00) will be turned
ON when the PV reaches 0000 0000.

When CIO 0.00 goes OFF, the timer PV will be reset to the SV and the Com-
pletion Flag will be turned OFF.

ON

Timer input
OFF

CIO 0.00

Timer PV
(D101 and D100)

Timer SV:
(D201 and D200)

Timer Completion ON i
Flag OFF :
(CIO 200.00)
1514131211109 8 7 6 5 4 8 21 0
prizoo [LTIITITTITIT]T]
Timer Completion
Flag
(CIO 200.00)
15 0
D2: D100 Timer's PV (LSB)
D101 Timer's PV (MSB)
1514131211109 8 76 543210
S: D200 0 0 0 0 Timer SV:
D201 0 0 1 0 (100,000 decimal= 10,000 s)

3-5-6 MULTI-OUTPUT TIMER: MTIM(543)/MTIMX(554)

Purpose

Ladder Symbol

MTIM(543)/MTIMX(554) operates a 0.1-s incrementing timer with eight inde-
pendent SVs and Completion Flags. The set value is 0 to 999.9 s for
MTIM(543) and 0 to 6,553.5 s for MTIMX(554), and the timer accuracy is 0 to
0.01s.

BCD

—] MTIM(543)
D1 D1: Completion Flags
D2 D2: PV word
S S: First SV word

187

Timer and Counter Instructions Section 3-5

Binary
| MTIMX(554)
D1 D1: Completion Flags
D2 D2: PV word
S S: First SV word
Variations
Variations Executed Each Cycle for ON Condition MTIM(543)/
MTIMX(554)
Executed Once for Upward Differentiation Not supported.
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Applicable Program Areas

Block program areas | Step program areas | Subroutines | Interrupt tasks

Not allowed OK OK Not allowed
Operands D1: Completion Flags
D1 contains the eight Completion Flags as well as the pause and reset bits.
15 9 87654 32 10
b1 | HEENENEEER
L Do not use. \;
Completion Flags
Reset bit
— Pause bit
D2: PV Word
D2 contains the 4-digit binary or BCD PV.
Data Range
BCD #0000 to #9999
Binary &0 to &65535 (decimal)
#0000 to #FFFF (hex)

S: First SV Word

S through S+7 contain the eight independent SVs.
Each SV must be as follows:

Data Range
BCD #0000 to #9999
Binary &0 to &65535 (decimal)
#0000 to #FFFF (hex)

Corresponding bit
(Completion Flag) in D1

— 0

S+1
S+2

: — 1

— 2

S+7 : ! ! — 7

188

Timer and Counter Instructions Section 3-5
Data Range
BCD One word for each of 8 timer SV:
#0000 to #9999
Binary One word for each of 8 timer SV:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)
Note S through S+7 must be in the same data area.
Operand Specifications
Area D1 | D2 S
ClO Area CIO 0to CIO 6143 ClO0to
ClO 6136
Work Area WO to W511 WO to W504
Holding Bit Area HO to H511 HO to H504
Auxiliary Bit Area A448 to A959 A0 to A952
Timer Area TOO00O0 to T4095 TOO00O0 to T4088
Counter Area CO0000 to C4095 CO0000 to C4088
DM Area DO to D32767 DO to D32760
Indirect DM addresses in @ DO to @ D32767
binary
Indirect DM addresses in BCD | *DO0 to *D32767
Constants
Data Registers DRO to DR15
Index Registers
Indirect addressing using ,IRO to ,IR15
Index Registers —2048 to +2047 IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
—(-=-)IRO to, —(— -)IR15

Description

When the execution condition for MTIM(543)/MTIMX(554) is ON and the reset
and timer bits are both OFF, MTIM(543)/MTIMX(554) increments the PV in
D2. If the pause bit is turned ON, the timer will stop incrementing the PV, but
the PV will retain its value. MTIM(543)/MTIMX(554) will resume timing when
the pause bit goes OFF again.

The PV (content of D2) is compared to the eight SVs in S through S+7 each
time that MTIM(543)/MTIMX(554) is executed, and if any of the SVs is less
than or equal to the PV, the corresponding Completion Flag (D1 bits 00
through 07) is turned ON.

When the PV reaches 9999, the PV will be reset to 0000 and all of the Com-
pletion Flags will be turned OFF. If the reset bit is turned ON while the timer is
operating or paused, the PV will be reset to 0000 and all of the Completion
Flags will be turned OFF.

189

Timer and Counter Instructions Section 3-5

Flags

Precautions

190

Timer PV
D2| |
Timer SVs —I
8 — 0
S+1 —
S+2 — 2
to to
S+7 — 7

Timer input

Timer PV (D2)

Completion
flags (D1)

Bito |

The following table shows the operation of MTIM(543)/MTIMX(554) for the
four possible combinations of the reset and pause bits.

Reset bit | Pause bit Operation
(Bit 08) (Bit 09)
OFF OFF The PV will be updated and the corresponding Completion
Flag will be turned ON when SV < PV.
ON The PV will not be updated and MTIM(543)/MTIMX(554)
will be treated as NOP(000).
ON OFF The PV will be reset to 0000 and the Completion Flags will
ON be turned OFF. The PV will not be updated.

The reset and pause bits are effective only when the execution condition for
MTIM(543)/MTIMX(554) is ON.

Name Label Operation

Error Flag ER ON if the PV contained in D2 is not BCD.
OFF in all other cases.

Unlike most timers, MTIM(543)/MTIMX(554) does not use a timer number.
(Timer area PV refreshing is not performed for MTIM(543)/MTIMX(554).)

When the PV reaches 9999, the PV will be reset to 0000 and all of the Com-
pletion Flags will be turned OFF.

If in BCD mode and an SV in S through S+7 does not contain BCD data, that
SV will be ignored. An error will not occur and the Error Flag will not be turned
ON.

Since the Completion Flag for MTIM(543)/MTIMX(554) is in a data area it can
be forced set or forced reset like other bits, but the PV will not change.

Timer and Counter Instructions Section 3-5

Example

When eight or fewer SVs are required, set the word after the last SV to 0000.
MTIM(543)/MTIMX(554) will ignore the SV that is set to 0000 and all of the
remaining SVs.

SCH ooozcH| 1 ¢ 0 1 2 i 9
goo3cH| 2 ¢ 5 + 0 i 5
0004CH 6 0 1 4 i 0
ogoscH| o0 i 0 . 6 i o0
to to
S+7CH 0009CH : } :
These SVs
are ignored.

The timer's PV is refreshed only when MTIM(543)/MTIMX(554) is executed,
so the timer will not operate properly when the cycle time exceeds 100 ms
because the timer increments in 100-ms units. To ensure precise timing and
prevent problems caused by long cycle times, input the same MTIM(543)/
MTIMX(554) instruction at several points in the program.

The timer's Completion Flag is refreshed only when MTIM(543)/MTIMX(554)
is executed, so a delay of up to one cycle may be required for the Completion
Flag to be turned ON after the timer times out.

When MTIM(543)/MTIMX(554) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will retain its previous
value (it will not be reset). Be sure to take this fact into account when
MTIM(543)/MTIMX(554) is programmed between IL(002) and ILC(003).
When an operating MTIM(543)/MTIMX(554) timer is in a program section
between JMP(004) and JME(005) and the program section is jumped, the PV
will retain its previous value. Be sure to take this fact into account when
MTIM(543)/MTIMX(554) is programmed between JMP(004) and JME(005).
Be sure that the words specified for the Completion Flags and PV (D1 and
D2) are not used in other instructions. If these words are affected by other
instructions, the timer might not time out properly.

If a word in the CIO area is specified for D1, the SET and RSET instructions
can be used to control the pause and reset bits.

When CIO 0.00 is ON and the pause bit (CIO 200.09) is OFF in the following
example, the timer will start operating when the reset bit (CIO 200.08) is
turned from ON to OFF. The timer’'s PV will begin timing up from 0000.

The eight SVs in D200 through D207 are compared to the PV and the corre-
sponding Completion Flags (CIO 200.00 through CIO 200.07) are turned ON
when the SV < PV.

191

Timer and Counter Instructions

Section 3-5

192

0.00
Pt rim
D1 200
p2| D100
s| D200

Timer input
CIO 0.00 OFF

Reset bit ON
ClO 200.08 oFF

Corresponding completion
flag ON when SV < PV.

15 38785482189
D1: 200 | | |
\\mtion Flags
Reset bit
Pause bit
Timer PV i
imer 15 : : 0 (Incrementing)
D2: D100 0 1 o | o |
Timer SVs 15
S: D200 0 0 8 I R R b
S+1: D201 0 0 i R R B
S+2: D202 0 ! 0 R b g HLEN b
S+3: D203 0 ! ! CH g BUN |
S+4: D204 0 ! 2 I gl BN
S+5: D205 0 1 8 0 | —~1°)
S+6: D206 0 1 5 0 |-—~1]0]8
S+7: D207 1 0 0 0 |—LoJ7

Pause bit ON
CIO 200.09 oFF

Timer input must remain ON
while the timer is timing.

Max. PV = 9999

Timing resumes.

Timer SVs
Sv7

sv1

SVoO

Completion Flags
p g oN

200.00 OFF

ON
OFF

200.01

ON

200.07
OFF

Timer and Counter Instructions

Section 3-5

3-5-7 COUNTER: CNT/CNTX(546)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

Operand Specifications

CNT/CNTX(546) operates a decrementing counter. The setting range 0 to
9,999 for CNT and 0 to 65,535 for CNTX(546).

BCD

Count input ——— CNT
N N: Counter number
S S: Set value

Reset input |

Binary

Count input —— CNTX(546)
N N: Counter number
S S: Set value

Reset input -]

Variations Executed Each Cycle for ON Condition CNT/
CNTX(546)
Executed Once for Upward Differentiation Not supported.
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Block program areas

Step program areas

Subroutines

Interrupt tasks

Not allowed

OK

OK

OK

N: Counter Number
The counter number must be between 0000 and 4095 (decimal).

S: Set Value
Data Range
BCD #0000 to #9999
Binary &0 to &65535 (decimal)
#0000 to #FFFF (hex)
Area N S
CIO Area CIO 0to CIO 6143
Work Area -—- WO to W511
Holding Bit Area | --- HO to H511
Auxiliary Bit A0 to A959
Area
Timer Area - TOO00O0 to T4095
Counter Area 0000 to 4095 (decimal) C0000 to C4095
DM Area DO to D32767
Indirect DM @ DO to @ D32767

addresses in

binary

193

Timer and Counter Instructions Section 3-5

Description

Flags

Precautions

194

Area N S
Indirect DM *D0 to *D32767
addresses in
BCD
Constants BCD:

#0000 to 9999 (BCD)

“&" cannot be used.
Binary:

&0 to &65535 (decimal)

#0000 to #FFFF (hex)

-- DRO to DR15

Data Registers

Index Registers

Indirect address- | ,IRO to ,IR15

Egglfsstigqulndex —2048 to +2047 IR0 to —2048 to +2047 ,|R15
DRO to DR15, IRO to IR15

The counter PV is decremented by 1 every time that the count input goes from
OFF to ON. The Completion Flag is turned ON when the PV reaches O.

Once the Completion Flag is turned ON, reset the counter by turning the reset
input ON or by using the CNR(545)/CNRX(547) instruction. Otherwise, the
counter cannot be restarted.

The counter is reset and the count input is ignored when the reset input is ON.
(When a counter is reset, its PV is reset to the SV and the Completion Flag is
turned OFF)

Count input

Reset input

Counter PV SV h
0

Completion ©N

Flag OFF
Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a counter.
ON if in BCD mode and S does not contain BCD data.
OFF in all other cases.

Equals Flag = OFF or unchanged

Negative Flag N OFF or unchanged

Counter numbers are shared by the CNT, CNTX(546), CNTR(012),
CNTRX(548), CNTW(814), and CNTWX(818) instructions. If two counters
share the same counter number but are not used simultaneously, a duplica-
tion error will be generated when the program is checked but the counters will
operate normally. Counters which share the same counter number will not
operate properly if they are used simultaneously.

A counter’s PV is refreshed when the count input goes from OFF to ON and
the Completion Flag is refreshed each time that CNT/CNTX(546) is executed.
The Completion Flag is turned ON if the PV is 0 and it is turned OFF if the PV
is not 0.

Timer and Counter Instructions Section 3-5

Note

When a CNT/CNTX(546) counter is forced set, its Completion Flag will be
turned ON and its PV will be reset to 0000. When a CNT/CNTX(546) counter
is forced reset, its Completion Flag will be turned OFF and its PV will be set to
the SV.

Be sure to reset the counter by turning the reset input from
OFF — ON — OFF before beginning counting with the count input, as shown
in the following diagram. The count input will not be received if the reset input
is ON.

ON

Reset input OFF

ON

Count input
OFF

SV
Counter PV

ON

'
|
|
|
|
|
|
T
|
|
|
|
|
|
-
|
|
'
|
|

Completion
Flag OFF

t
Ready to start
counting

The reset input will take precedence and the counter will be reset if the reset
input and count input are both ON at the same time. (The PV will be reset to
the SV and the Completion Flag will be turned OFF.)

ON

Reset input OFF

ON
OFF

SV
Counter PV
0

Completion ©N
Flag OFF

Count input

f f

Count input Reset input Count input
can bere- takes pre- can be re-
ceived. cedence. ceived.

The operation of the = Flag and N Flag depends on the model of the CPU
Unit. Refer to Flags, above, for details.

If online editing is used to add a counter, the counter must be reset before it
will work properly. If the counter is not reset, the previous value will be used as
the counter’s present value (PV), and the counter may not operate properly
after it is written.

195

Timer and Counter Instructions

Section 3-5

Counter PVs are retained even through a power interruption. If you want to
restart counting from the SV instead of resuming the count from the retained
PV, add the First Cycle Flag (A200.11) as a reset input to the counter.

CNT

N

First Cycle Flag
(A200.11)

s

3-5-8 REVERSIBLE COUNTER: CNTR(012)/CNTRX(548)
CNTR(012)/CNTRX(548) operates a reversible counter.

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

196

BCD

Increment input

Decrement input—|

Reset input

Binary

Increment input

Decrement input—|

CNTR(012)
N N: Counter number
S S: Set value

CNTRX(548)
N N: Counter number
S S: Set value

Reset input
Variations Executed Each Cycle for ON Condition CNTR(012)/
CNTRX(548)
Executed Once for Upward Differentiation Not supported.
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Block program areas

Step program areas

Subroutines

Interrupt tasks

Not allowed

OK

OK

OK

N: Counter Number
The counter number must be between 0000 and 4095 (decimal).

S: Set Value

Data Range
BCD #0000 to #9999
Binary &0 to &65535 (decimal)

#0000 to #FFFF (hex)

Timer and Counter Instructions Section 3-5
Operand Specifications
Area N S

CIO Area CIO 0to CIO 6143

Work Area --- WO to W511

Holding Bit Area | --- HO to H511

Auxiliary Bit A0 to A959

Area

Timer Area --- TOO00O to T4095

Counter Area 0000 to 4095 (decimal) C0000 to C4095

DM Area --- DO to D32767

Indirect DM @ DOto @ D32767

addresses in

binary

Indirect DM - *DO0 to *D32767

addresses in

BCD

Constants BCD:
#0000 to 9999 (BCD)
“&" cannot be used.

Binary:

&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers | --- DRO to DR15

Index Registers | ---

Indirect address- | ,IR0 to ,IR15

'Sg Ust'”g Index | _2048 to +2047 ,IR0 to —2048 to +2047 ,IR15

egisters DRO to DR15, IR0 to IR15

Description

The counter PV is incremented by 1 every time that the increment input goes
from OFF to ON and it is decremented by 1 every time that the decrement
input goes from OFF to ON. The PV can fluctuate between 0 and the SV.

Increment input

Decrement input 1

When incrementing, the Completion Flag will be turned ON when the PV is
incremented from the SV back to 0 and it will be turned OFF again when the
PV is incremented from O to 1.

Counter PV

Counter PV

Completion Flag °

197

Timer and Counter Instructions Section 3-5

Flags

Precautions

198

When decrementing, the Completion Flag will be turned ON when the PV is
decremented from O up to the SV and it will be turned OFF again when the PV
is decremented from the SV to SV-1.

SV
Counter PV

ON
Completion Flag OFF

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a counter.

ON if in BCD mode and S does not contain BCD data.
OFF in all other cases.

Counter numbers are shared by the CNT, CNTX(546), CNTR(012),
CNTRX(548), CNTW(814), and CNTWX(818) instructions. If two counters
share the same counter number but are not used simultaneously, a duplica-
tion error will be generated when the program is checked but the counters will
operate normally. Counters which share the same counter number will not
operate properly if they are used simultaneously.

The PV will not be changed if the increment and decrement inputs both go
from OFF to ON at the same time. When the reset input is ON, the PV will be
reset to 0 and both count inputs will be ignored.

The Completion Flag will be ON only when the PV has been incremented
from the SV to 0 or decremented from O to the SV; it will be OFF in all other
cases.

When inputting the CNTR(012)/CNTRX(548) instruction with mnemonics, first
enter the increment input (Il), then the decrement input (DI), the reset input
(R), and finally the CNTR(012)/CNTRX(548) instruction. When entering with
the ladder diagrams, first input the increment input (ll), then the CNTR(012)/
CNTRX(548) instruction, the decrement input (DI), and finally the reset input

(R).

Timer and Counter Instructions

Section 3-5

Examples

Basic Operation of CNTR(012)/CNTRX(548)

The counter PV is reset to 0 by turning the reset input (CIO 0.02) ON and
OFF. The PV is incremented by 1 each time that the increment input
(CIO 0.00) goes from OFF to ON. When the PV is incremented from the SV
(3), it is automatically reset to 0 and the Completion Flag is turned ON.

Likewise, the PV is decremented by 1 each time that the decrement input
(ClO 0.01) goes from OFF to ON. When the PV is decremented from O, it is
automatically set to the SV (3) and the Completion Flag is turned ON.

0.00 Increment input

CNTR

Decrement

0001

0“01 input [_

#3

il
0,',02 Reset input lr
il

Increment input

Cl0 0.00 ,

ON !
Decrement input '
Cl0 0.01 OFF !
Reset input ON :
CI0 0.02 OFF i
Counter PV P
C0001

ON
Completion Flag
C0001 OFF

199

Timer and Counter Instructions Section 3-5

Specifying the SV in a Word

In the following example, the SV for CNTR(012) 0007 is determined by the
content of CIO 1. The content of CIO 1 can be controlled by an external switch
so that the set value can be changed manually from the switch.

0.00
i CNTR
o608 Fixed SV:
0.01 [] 5000
_ll #5000
0.02 "
il
i
qulos 200.07
il
0.03
—| CNTR
0007| V-
0.04
i [] Jlclo 1
0.05 "
|
—|
Cooo? 200.08
)%
Zdi
49995Q00 o 1 2
Increment input Eif i [

1 0 50004000

Decrement input,

Completion Flag

RoIFI‘—deer Roll-back

3-5-9 RESET TIMER/COUNTER: CNR(545)/CNRX(547)

Purpose Resets the timers or counters within the specified range of timer or counter
numbers.
Ladder Symbol BCD
—] CNR(545)
N1 N1: First number in range
N2 No: Last number in range
Binary
CNRX(547)
N1 N1: First number in range
N2 N,: Last number in range

200

Timer and Counter Instructions Section 3-5

Variations
Variations Executed Each Cycle for ON Condition CNR(545)/
CNRX(547)
Executed Once for Upward Differentiation @CNR(545)/
CNRX(547)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Applicable Program Areas

Block program areas | Step program areas Subroutines | Interrupt tasks
OK OK OK OK

Operands N;: First Number in Range
N; must be a timer number between TOO00 and T4095 or a counter number
between CO000 and C4095.
N,: Last Number in Range

N, must be a timer number between TO000 and T4095 or a counter number
between C0000 and C4095.

Note Nj and N, must be in the same data area, i.e., N; and N, must be timer num-
bers or counter numbers.

Operand Specifications

Area N, Ny
CIO Area
Work Area
Holding Bit Area
Auxiliary Bit Area
Timer Area C0000 to C4095 C0000 to C4095
Counter Area TOO00O to T4095 T0OO00O0 to T4095
DM Area

Indirect DM addresses | ---
in binary

Indirect DM addresses | ---
in BCD

Constants
Data Registers

Index Registers --- .

Indirect addressing ,IRO to ,IR15

using Index Registers | _2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

IRO+(++) to ,IR15+(++)

,—~(=-)IRO to, —(— -)IR15

Description CNR(545)/CNRX(547) resets the Completion Flags of all timers or counters
from N, to N,. At the same time, the PVs will all be set to the maximum value

(9999 for BCD and FFFF for binary). (The PV will be set to the SV the next
time that the timer or counter instruction is executed.)

201

Timer and Counter Instructions Section 3-5

Flags

Precautions

Example

202

Note

Timers Reset by CNR(545)/CNRX(547)

The following timers will be reset if their timer numbers fall within the specified
range: TIM, TIMX(550), TIMH(015), TIMHX(551), TMHH(540), TMHHX(552),
TTIM(087), TTIMX(555), TIMW(813), TIMWX(816), TMHW(815), and
TMHWX(817). When a timer is reset, its Completion Flag is turned OFF and
its PV is set to the maximum value of 9999.

The TIML(542), TIMLX(553), MTIM(543), and MTIMX(554) timers are not
reset by CNR(545)/CNRX(547) because these timers do not use timer num-
bers.

Counters Reset by CNR(545)/CNRX(547)

The following counters will be reset if their counter numbers fall within the
specified range: CNT, CNTX(546), CNTR(012), CNTRX(548), CNTW(814),
and CNTWX(818). When a counter is reset, its Completion Flag is turned
OFF and its PV is set to the maximum value of 9999.

Name Label Operation

Error Flag |ER ON if N; is indirectly addressed through an Index Register but

the address in the Index Register is not the PV address of a
timer or counter.

ON if N, is indirectly addressed through an Index Register but

the address in the Index Register is not the PV address of a
timer or counter.

ON if N7 and N, are not in the same data area.
OFF in all other cases.

CNR(545)/CNRX(547) does not reset the timer/counter instructions them-
selves, it resets the PVs and Completion Flags allocated to those instructions.
In most cases, the effect of CNR(545)/CNRX(547) is different from directly
resetting the instructions. For example, when a TIM/TIMX(550) instruction is
reset directly its PV is set to the SV, but when that timer is reset by CNR(545)/
CNRX(547) its PV is set to the maximum value of 9999.

When N1 and N2 are specified with N1>N2, only the Completion Flag for the
timer/counter number will be reset.

When CIO 0.00 is ON in the following example, the Completion Flags for tim-
ers TO002 to TOOO5 are turned OFF and the timers’ PVs are set to the maxi-
mum value of 9999.

When CIO 0.01 is ON, the Completion Flags for counters C0003 to C0007 are
turned OFF and the counters’ PVs are set to the maximum value of 9999.

0.00
il CNR
Tooo2
T0005
0.01
i CNR
©0003
€0007

Timer and Counter Instructions Section 3-5

3-5-10 Example Timer and Counter Applications

Example 1:
Long-term Timers

The following examples show various applications of timer and counter
instructions including long-term timers, a two-stage counter, ON/OFF delay,
one-shot bit, and flicker bit.

The following program examples show three ways to create long-term timers
with standard TIM and CNT instructions.
Two TIM Instructions

In this example, two TIM instructions are combined to make a 30-minute
timer.

_Oﬁo ™ Address | Instruction |Operands

0001 000000 | LD 0.00
#9000 000001 | TIM 0001

T0001 #9000

1} TIM 000002 | LD T0001
oooz| [.000003 | TIM 0002

#9000 #9000

T0002 50000 | 000004 | LD T0002

—— | 000005 ouT 200.00

TIM and CNT Instructions

In this example, a TIM instruction and a CNT instruction are combined to
make a 500-second timer.

TIM 0001 generates a pulse every 5 s and CNT 0002 counts these pulses.
The set value for this combination is the timer interval x counter SV. In this
case, the timer SV would be 5 s x 100 = 500 s. With this combination, the
long-term timer's PV is actually the PV of a counter, which is maintained
through power interruptions.

100|-00 o Address | Instruction |[Operands
I
L T T T
0,01 L9 [To00002 [ot 0002
L
' #100
[0.00 10000 Co0g2 000003 | LD 0.00
I Al Al TIM 000004 AND NOT | 100.00
Start Count up 0001 000005 AND NOT | C0002
#50 000006 TIM 0001
ch'.m 100.00. #50
1} O 000007 LD TOO01
000008 ouT 100.00
quloz 200.01 | 000009 LD C0002
11 000010 ouT 201.01

203

Timer and Counter Instructions

Section 3-5

Example 2:

Two-stage Counter

204

Clock Pulse and CNT Instruction

In this example, a CNT instruction counts the pulses from the 1-s clock pulse

to make a 700-second timer.

If the First Cycle Flag (A200.11) is ORed with the counter’s reset input
(CIO 0.01), the counter’s PV will be reset to the SV (0700) when program exe-
cution begins rather than resuming the count from the previous PV.

0.00 P_1s(1-sclock)

Il Il CNT

0001
0.01 #700
—AF
A2|O|0.11
1T
200.02

Address | Instruction |Operands
000000 | LD 0.00
000001 | AND ls
000002 LD NOT 0.01
000003 OR A200.11
000004 CNT 0001

#700
000005 | LD C0001
000006 | OUT 200.02

When an SV higher than 9999 is required, two counters can be combined as
shown in the following example. In this case, two CNT instructions are com-
bined to make a BCD counter with an SV of 20,000.

_Oﬁ)o Oi?l ONT Address | Instruction | Operands

0001 000000 | LD 0.00

0.02 #100 000001 [AND 0.01

v (000002 | LDNOT | 0.02
€0001 000003 [OR C0001
L —] 000004 [OR C0002

000005 [CNT 0001

con02 #100
" 000006 | LD C0001

CO|0|01 000007 [LDNOT [0.02

1 CNT 000008 [CNT 0002

0.02 0002 #200
A #200] | 000009 | LD C0002
©0002 200,03 | 000010 | ouT 200.03

I

Timer and Counter Instructions

Section 3-5

Example 3: In this example two TIM timers are combined with KEEP(011) to make an ON
ON/OFF Delay delay and an OFF delay. CIO 100.00 will be turned ON 5.0 seconds after
CIO 0.00 goes ON and it will be turned OFF 3.0 seconds after CIO 0.00 goes
OFF
0.00 -
I — Address | Instruction | Operands
0001 000000 | LD 0.00
#50 000001 [TIm 0001
100.00 0.00 #50
L L 000002 | LD 100.00
I A1 TIM
P 000003 | AND NOT | 0.00
730 000004 | TIm 0002
#30
To001 000005 | LD T0001
i} KEEP 000006 | LD T0002
T0002 100.00 000007 | KEEP(011) | 100.00
i n
ClO 0.00 ! !
1 1
CIO 100.00 —
50s 3.0s
Example 4: A TIM timer can be combined with OUT or OUT NOT to control how long a
One-shot Bit particular bit is ON or OFF. In this example, CIO 100.00 will be ON for 1.5 sec-
onds (the SV of T0001) after CIO 0.00 goes ON.
” Address | Instruction | Operands
W0.00 WO.0L 000000 | LD 0.00
1l w 000001 | LD WO0.00
1 Al 000002 AND NOT [WO0.01
W0.00 000003 | OR LD
l TIM 000004 | OUT WO0.00
0001 000005 | LD WO0.00
#15 000006 | TIM 0001
#15
W0.01
To001 000007 [LD T0001
' 000008 | OUT WO0.01
WO0.00 WO0.01 100.00 000009 | LD WO0.00
— | —+HF {) 000010 | AND NOT[wo0.01
000011 | OUT 100.00
ClO 0.00 .l l !-I
1 1
ClO 100.00
15s 15s

205

Timer and Counter Instructions Section 3-5

Example 5:
Flicker Bit

The following program examples show two ways to create flicker bits. The
second example just mimics a clock pulse.
Two TIM Instructions
Two TIM timers can be combined to make a bit turn ON and OFF at regular
intervals while the execution condition is ON. In this example, CIO 200.00 will
be OFF for 1.0 second and then ON for 1.5 seconds as long as CIO 0.00 is
ON.
0]-?0 70392 Address | Instruction |Operands
il Al TIM
5001 000000 [LD 0.00
o 000001 [AND T0002
000002 [TIMm 0001
200.00 #10
1l TIM 000003 [LD 200.00
0002 000004 | TIM 0002
#15 #15
0001 200.00 000005 [LD T0001
i O 000006 [ouT 200.00
Cl0 0.00 T
1
CIO 200.00 _.i I || I

10s

15s 10s 15s

Clock Pulse

The desired execution condition can be combined with a clock pulse to mimic
the clock pulse (0.1 s,0.2s,0r 1.0 s).

I Ol'?o Pl_is 100,00 Address | Instruction | Operands
) (] O

| 1-s clock pulse 000000 | LD 0.00
000001 | AND 1s

0.00 000002 | ouT 100.00

1-s clock {}

pulse '

100.00

A,B=0.

3-5-11 Indirect Addressing of Timer/Counter Numbers

206

Timer and counter numbers can be indirectly addressed using Index Regis-
ters. When Index Registers will be used for indirect addressing, use
MOVRW(561) (MOVE TIMER/COUNTER PV TO REGISTER) to set the PLC
memory address of the desired timer or counter’s PV to the desired Index
Register.

The following timers and counters can be indirectly addressed using Index
Registers: TIM, TIMX(550), TIMH(015), TIMHX(551), TTIM(087),
TTIMX(555), TMHH(540), TMHHX(552), TIMW(813), TIMWX(816),
TMHW(815), TMHWX(817), CNT, CNTX(546), CNTR(012), CNTRX(548),
CNTW(814), and CNTWX(818). (These are the timers and counters that use
timer and counter numbers.)

Timer and Counter Instructions Section 3-5

Example

1,2,3...

The timer or counter instruction will not be executed if the PLC memory
address in the specified Index Register is not the address of a timer or counter
PV.

Using Index Registers to indirectly address timers and counters can reduce

the size of the program and increase flexibility. For example, common subrou-
tines can be created.

The following example shows a program section that uses indirect addressing
to define and start 100 timers with SVs contained in D100 through D199. IRO
contains the PLC memory address of the timer PV and IR1 contains the PLC
memory address of the timer Completion Flag.

DM address Content Function
D100 0010 SV for TO000
D101 0100 SV for TO001
D102 0050 SV for TO002
D199 0999 SV for TO099

P On
| MOVRW |1
(Always ON T0000
Flag) IRG
MOVR 5
TO00O
IR4
MOVR 3
2000.00!
IR2
MOV 4
&100
DO
FOR | |
&100
IR2
v (a TIM
IR0+ 5
@Do
JR1+
] O
JIR2+
P_On
1L
I ++
(Always ON DO
Flag) |
NEXT

1. MOVRW(561) moves the PLC memory address of the PV for timer TO000
to IRO. Afterwards IR0 can be used in place of the timer number.

207

Timer and Counter Instructions Section 3-5

208

2. MOVR(560) moves the PLC memory address of the Completion Flag for
timer TOOOO to IR1.

3. MOVR(560) moves the PLC memory address of CIO 2000.00 into IR2.
4. MOV(021) moves &100 into DO for indirect addressing of the timer SVs.

5. The content of IR0, IR1, IR2, and DO are incremented by 1 each time as
this loop is executed 100 times, starting timers TO through T99.

The loop in the program above has 4 input parameters which are used to start

all 100 timers with this common subroutine.

IRO The PLC memory address of the timer’s PV

IR1 The PLC memory address of the timer's Completion Flag
IR2 The PLC memory address of the timer’s execution condition
DO The DM address of the word containing the timer's SV

The subroutine above is equivalent to the 400 instructions below.

2000.00

W TIM
0000
D100
T0000 2000.00
Il
I QO
2000.01
W TIM
0001
D101
TO001 2000.01
1l
11
2006.02
W ™M
0009
D199
10099 2006.02

1 O

Comparison I nstructions

Section 3-6

3-6 Comparison Instructions

This section describes instructions used to compare data of various lengths

3-6-1

Purpose

Note

Ladder Symbol

Variations

Applicable Program Areas

and in various ways.

Instruction Mnemonic Function | Page
code

Input Comparison Instructions | =, <>, <, <=, >, >= 300 to 328 | 209
(S, L) (LD, AND, OR)

Time Comparison Instructions | =DT, <>DT, <DT, <=DT, >DT, |341to 346 |215
>=DT (LD, AND, OR)

COMPARE CMP 020 220

DOUBLE COMPARE CMPL 060 222

SIGNED BINARY COMPARE CPS 114 225

DOUBLE SIGNED BINARY CPSL 115 227

COMPARE

MULTIPLE COMPARE MCMP 019 230

TABLE COMPARE TCMP 085 233

BLOCK COMPARE BCMP 068 235

EXPANDED BLOCK COMPARE | BCMP2 502 238

Input Comparison Instructions (300 to 328)

Input comparison instructions compare two values (constants and/or the con-
tents of specified words) and create an ON execution condition when the
comparison condition is true. Input comparison instructions are available to
compare signed or unsigned data of one-word or double length data.

Refer to 3-14-21 Single-precision Floating-point Comparison Instructions for
details on single-precision floating-point input comparison instructions and 3-
15-21 Double-precision Floating-point Input Instructions for details on double-
precision floating-point input comparison instructions.

Symbol & options

S

S

S1: Comparison data 1

S2: Comparison data 2

Variations

Creates ON Each Cycle Comparison is True

Input compari-
son instruction

Immediate Refreshing Specification

Not supported

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK OK

OK

OK

Operand Specifications for Instructions for One-word Data

Area S S,
CIO Area CIO0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area AO to A959

Timer Area

TOO00O0 to T4095

209

Comparison I nstructions

Section 3-6

Area

S S

Counter Area

CO0000 to C4095

DM Area DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary

Indirect DM addresses
in BCD

*DO to *D32767

Constants

#0000 to #FFFF (binary)
&0 to &65535 (unsigned decimal)

using Index Registers

Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

—2048 to +2047 IR0 to —2048 to +2047 IR15
DRO to DR15, IR0 to IR15

JRO+(++) t0 IR15+(++)

~(=-)IRO to, (- -)IR15

Operand Specifications for Instructions for Double-length Data

Description

210

Area S; | S,
CIO Area CIO 0to CIO 6142
Work Area WO to W510
Holding Bit Area HO to H510
Auxiliary Bit Area AO to A958
Timer Area TOO0OO to T4094
Counter Area C0000 to C4094
DM Area DO to D32766
Indirect DM addresses | @ DO to @ D32767
in binary

Indirect DM addresses
in BCD

*DO to *D32767

Constants

#00000000 to #FFFFFFFF (binary)
&0 to &4294967295 (unsigned decimal)

Data Registers

Index Registers

IRO to IR15 (for unsigned data only)

Indirect addressing
using Index Registers

IR0 to ,IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(=9)IR0 to, —(- -)IR15

The input comparison instruction compares S; and S, as signed or unsigned
values and creates an ON execution condition when the comparison condition
is true. Unlike instructions such as CMP(020) and CMPL(060), the result of an
input comparison instruction is reflected directly as an execution condition, so
it is not necessary to access the result of the comparison through an Arith-
metic Flag and the program is simpler and faster.

Comparison I nstructions

Section 3-6

Inputting the Instructions

The input comparison instructions are treated just like the LD, AND, and OR
instructions to control the execution of subsequent instructions.

Input type Operation
LD The instruction can be connected directly to the left bus bar.
AND The instruction cannot be connected directly to the left bus bar.
OR The instruction can be connected directly to the left bus bar.

LD connection

I
—

— <

S1
82

AND connection

S1

Options

ON execution condition when
/—_comparison result is true.

ON execution condition when

comparison result is true.

S11 __ ON execution condition when
S2 comparison result is true.

The input comparison instructions can compare signed or unsigned data and
they can compare one-word or double values. If no options are specified, the
comparison will be for one-word unsigned data. With the three input types and
two options, there are 72 different input comparison instructions.

Symbol Option (data format) | Option (data length)
= (Equal) None: Unsigned data | None: One-word data
<> (Not equal) S: Signed data L: Double-length data
< (Less than)
<= (Less than or equal)
> (Greater than)
>= (Greater than or equal)

Unsigned input comparison instructions (i.e., instructions without the S option)
can handle unsigned binary or BCD data. Signed input comparison instruc-
tions (i.e., instructions with the S option) handle signed binary data.

211

Comparison I nstructions

Section 3-6

212

Summary of Input Comparison Instructions

The following table shows the function codes, mnemonics, names, and func-
tions of the 72 input comparison instructions. (For one-word comparisons
C1=S, and C2=S,; for double comparisons C1=S;+1, S; and C2=S,+1, S,.)

Code | Mnemonic Name Function
300 |LD= LOAD EQUAL True if
AND= AND EQUAL cl=cC2
OR= OR EQUAL
301 |LD=L LOAD DOUBLE EQUAL
AND=L AND DOUBLE EQUAL
OR-=L OR DOUBLE EQUAL
302 |LD=S LOAD SIGNED EQUAL
AND=S AND SIGNED EQUAL
OR=S OR SIGNED EQUAL
303 |LD=SL LOAD DOUBLE SIGNED EQUAL
AND=SL |AND DOUBLE SIGNED EQUAL
OR=SL OR DOUBLE SIGNED EQUAL
305 |LD<> LOAD NOT EQUAL True if
AND<> AND NOT EQUAL ClzC2
OR<> OR NOT EQUAL
306 |LD<>L LOAD DOUBLE NOT EQUAL
AND<>L |AND DOUBLE NOT EQUAL
OR<>L OR DOUBLE NOT EQUAL
307 |LD<>S LOAD SIGNED NOT EQUAL
AND<>S | AND SIGNED NOT EQUAL
OR<>S OR SIGNED NOT EQUAL
308 |[LD<>SL |LOAD DOUBLE SIGNED NOT EQUAL
AND<>SL |AND DOUBLE SIGNED NOT EQUAL
OR<>SL |OR DOUBLE SIGNED NOT EQUAL
310 |[LD< LOAD LESS THAN True if
AND< AND LESS THAN Cl<cC2
OR< OR LESS THAN
311 |LD<L LOAD DOUBLE LESS THAN
AND<L AND DOUBLE LESS THAN
OR<L OR DOUBLE LESS THAN
312 |LD<S LOAD SIGNED LESS THAN
AND<S AND SIGNED LESS THAN
OR<S OR SIGNED LESS THAN
313 |LD<SL LOAD DOUBLE SIGNED LESS THAN
AND<SL |AND DOUBLE SIGNED LESS THAN
OR<SL OR DOUBLE SIGNED LESS THAN

Comparison I nstructions

Section 3-6

Flags

Code | Mnemonic Name Function
315 |LD<= LOAD LESS THAN OR EQUAL True if
AND<= AND LESS THAN OR EQUAL ClscC2
OR<= OR LESS THAN OR EQUAL
316 |LD<=L LOAD DOUBLE LESS THAN OR EQUAL
AND<=L | AND DOUBLE LESS THAN OR EQUAL
OR<=L OR DOUBLE LESS THAN OR EQUAL
317 |LD<=S LOAD SIGNED LESS THAN OR EQUAL
AND<=S | AND SIGNED LESS THAN OR EQUAL
OR<=S OR SIGNED LESS THAN OR EQUAL
318 |LD<=SL |LOAD DOUBLE SIGNED LESS THAN OR EQUAL | True if
AND<=SL |AND DOUBLE SIGNED LESS THAN OR EQUAL |C1=C2
OR<=SL |OR DOUBLE SIGNED LESS THAN OR EQUAL
320 |LD> LOAD GREATER THAN True if
AND> AND GREATER THAN Ci>C2
OR> OR GREATER THAN
321 |LD>L LOAD DOUBLE GREATER THAN
AND>L AND DOUBLE GREATER THAN
OR>L OR DOUBLE GREATER THAN
322 |LD>S LOAD SIGNED GREATER THAN
AND>S AND SIGNED GREATER THAN
OR>S OR SIGNED GREATER THAN
323 |LD>SL LOAD DOUBLE SIGNED GREATER THAN
AND>SL | AND DOUBLE SIGNED GREATER THAN
OR>SL OR DOUBLE SIGNED GREATER THAN
325 |LD>= LOAD GREATER THAN OR EQUAL True if
AND>= AND GREATER THAN OR EQUAL ClzC2
OR>= OR GREATER THAN OR EQUAL
326 | LD>=L LOAD DOUBLE GREATER THAN OR EQUAL
AND>=L | AND DOUBLE GREATER THAN OR EQUAL
OR>=L OR DOUBLE GREATER THAN OR EQUAL
327 |LD>=S LOAD SIGNED GREATER THAN OR EQUAL
AND>=S | AND SIGNED GREATER THAN OR EQUAL
OR>=S OR SIGNED GREATER THAN OR EQUAL
328 |LD>=SL |LOAD DBL SIGNED GREATER THAN OR EQUAL
AND>=SL | AND DBL SIGNED GREATER THAN OR EQUAL
OR>=SL | OR DBL SIGNED GREATER THAN OR EQUAL
Name Label Operation

Greater Than >

Flag

ON if S; > S, with one-word data.

OFF in all other cases.

ON if S;+1, S; > S,+1, S, with double-length data.

Greater Than or

> =

ON if S; 2 S, with one-word data.

Equal Flag ON if S1+1, S; = Sy+1, S, with double-length data.
OFF in all other cases.
Equal Flag = ON if S; = S, with one-word data.

OFF in all other cases.

ONif S;+1, S; = S,+1, S, with double-length data.

213

Comparison I nstructions

Section 3-6

Precautions

Name Label Operation

Not Equal Flag |= ON if S; # S, with one-word data.
ON if S;+1, S; # S,+1, S, with double-length data.
OFF in all other cases.

Less Than Flag |< ON if S; < S, with one-word data.
ON if S1+1, S; < S,+1, S, with double-length data.
OFF in all other cases.

Less Than or <= ON if S; £ S, with one-word data.
Equal Flag ON if S1+1, S; £ Sy+1, S, with double-length data.

OFF in all other cases.

Examples
0.00
|1
I <
D100
D200
0.01
| <s
D110
D210
0.00
I -
D100
D200
0.01
———<s
D110
D210

214

Input comparison instructions cannot be used as right-hand instructions, i.e.,
another instruction must be used between them and the right bus bar.

AND LESS THAN: AND<(310)

When CIO 0.00 is ON in the following example, the contents of D100 and
D200 are compared in as unsigned binary data. If the content of D100 is less
than that of D200, CIO 100.00 is turned ON and execution proceeds to the
next line. If the content of D100 is not less than that of D200, the remainder of
the instruction line is skipped and execution moves to the next instruction line.

100.00
Unsigned S,: D100 S,: D200
EESS THAN 8714 3A1C
omparison
100.01 P Decimal: 34,580 Decimal: 14,876

34,580 > 14,876
(Will not proceed to next line.)

AND SIGNED LESS THAN: AND<S(312)

When CIO 0.01 is ON in the following example, the contents of D110 and
D210 are compared as signed binary data. If the content of D110 is less than
that of D210, CIO 100.01 is turned ON and execution proceeds to the next
line. If the content of D110 is not less than that of D210, the remainder of the
instruction line is skipped and execution moves to the next instruction line.

100.00
Signed S,: D110 S,: D210
LESS THAN
Comparison 8714 3A1C
100.01 Decimal: —30,956 Decimal: 14,876

-30,956 < 14,876
(Will proceed to next line.)

Comparison | nstructions Section 3-6

3-6-2 Time Comparison Instructions (341 to 346)

Purpose Time comparison instructions compare two BCD time values and create an
ON execution condition when the comparison condition is true.
The time comparison instructions are treated just like the LD, AND, and OR
instructions to control the execution of subsequent instructions.

Ladder Symbol

LD
Symbol |—
C C: Control word
S1 S1: First word of present time
S2 S2: First word of comparison time
AND
— Symbol —
Cc C: Control word
S1 Sz: First word of present time
S2 S2: First word of comparison time
OR
—— Symbol J
C C: Control word
S1 Sz: First word of present time
S2 S2: First word of comparison time
Variations
Variations Creates ON Each Cycle Comparison is True | Time compari-
son instruction
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas | Step program areas | Subroutines | Interrupt tasks
OK OK OK OK

Operands C: Control Word

Bits 00 to 05 of C specify whether or not the time data will be masked for the
comparison. Bits 00 to 05 mask the seconds, minutes, hours, day, month, and
year, respectively. If all 6 values are masked, the instruction will not be exe-
cuted, the execution condition will be OFF, and the Error Flag will be turned
ON.

clo oo oo oo ofole] [[11]]

_

Masks seconds data when ON.
Masks minutes data when ON.
Masks hours data when ON.
Masks day data when ON.
Masks month data when ON.
Masks year data when ON.

215

Comparison I nstructions Section 3-6

S, through S;+2: Present Time Data
S, through S;+2 contain the present time data. S; through S;+2 must be in
the same data area.

15 8 7 0
S1 |

L Seconds: 00 to 59 (BCD)

Minutes: 00 to 59 (BCD)

15 8 7 0

Si1+1

L Hour: 00 to 23 (BCD)
Day: 01 to 31 (BCD)

15 8 7 0

S1+2

B

Month: 01 to 12 (BCD)
Year: 00 to 99 (BCD)
Note When using the CPU Unit's internal clock data for the comparison, set S; to
A351 to specify the CPU Unit’s internal clock data (A351 to A353).

S, through S,+2: Comparison Time Data

S, through S,+2 contain the comparison time data. S, through S,+2 must be
in the same data area.

15 8 7 0
S2 |
L Seconds: 00 to 59 (BCD)
Minutes: 00 to 59 (BCD)
15 8 7 0
So+1
L Hour: 00 to 23 (BCD)
Day: 01 to 31 (BCD)
15 8 7 0
So2+2

L Month: 01 to 12 (BCD)

Year: 00 to 99 (BCD)

216

Comparison I nstructions

Section 3-6

Operand Specifications

Description

Area Cc S S,
CIO Area CIO0to ClO 6143 [CIO 0to CIO 6141 |CIO Oto CIO 6142
Work Area WO to W511 WO to W509 WO to W510
Holding Bit Area HO to H511 HO to H509 HO to H510
Auxiliary Bit Area A448 to A959 AO to A957 AO to A958
Timer Area TOO000 to T4095 TOO0O00 to T4093 TOO0O0O to T4094
Counter Area C0000 to C4095 C0000 to C4093 C0000 to C4094
DM Area DO to D32767 DO to D32765 DO to D32766
Indirect DM --- @ DO to @ D32767
addresses in binary
Indirect DM *DO to *D32767
addresses in BCD
Constants See previous page. | See previous page. | ---

Data Registers

Index Registers

Indirect addressing ,IRO to ,IR15

using Index Registers | 5048 to +2047 ,IRO to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—~(=-)IRO to, —(- -)IR15

The time comparison instruction compares the unmasked values (corre-
sponding bit of C set to 0) of the present time data in S; to S;+2 with the com-

parison time data in S, to S,+2 and creates an ON execution condition when

the comparison condition is true. At the same time, the result of a time com-
parison instruction is reflected in the arithmetic flags (=, <>, <, <=, >, >=).

There are 18 possible combinations of time comparison instructions.

Any time values that are masked in the control word (C) are not included in
the comparison.

The following table shows the ON/OFF status of each flag for each compari-
son result.

Result Flag status
= <> < <= > >=
S5:=S5, ON OFF OFF ON OFF ON
S1>S, OFF ON OFF OFF ON ON
S1<S, OFF ON ON ON OFF OFF

Comparison
<.

Conditions Flags
Result (= <>, < <=,> >3)

Masking Time Values

Time values can be masked individually and excluded from the comparison
operation. To mask a time value, set the corresponding bit in the control word
(C) to 1. Bits 00 to 05 of C mask the seconds, minutes, hours, day, month, and
year, respectively.

217

Comparison I nstructions

Section 3-6

218

Example:

When C = 39 hex, the rightmost 6 bits are 111001 (year=1, month=1, day=1,
hours=0, minutes=0, and seconds=1) so only the hours and minutes are com-
pared. This mask setting can be used to perform a particular operation at a
given time (hour and minute) each day.

Present time data Comparison time data

15 08 07 00 15 08 07 00
s, | Minute (00 to | Second (00 to s, | Minute (00 to | Second (00 to
59, BCD) 59, BCD) 159, BCD) 59, BCD)
S1+1 | Day of month) [Hour (00 to 541 | Day of month Hour (00 to
(01to 31, BC I23, BCD) (01to 31, BCD) | 23, BCD)
G142 Year (00 to onth (01 S Y to Month (01 to
1+2| 99, BCD) 2,BC < 2£2199, BCD) 12, BCD)

Compares only hours and

C Year, month, day, and seconds
minutes data.

data is masked.

Previous data comparison instructions compared data in 16-bit units. The
time comparison instructions are limited to comparing 8-bit time values.

The following table shows the structure of the CPU Unit's internal Calendar/
Clock Area.

Addresses
A351.00 to A351.07
A351.08 to A351.15
A352.00 to A352.07
A352.08 to A352.15

Contents

Second (00 to 59, BCD)
Minute (00 to 59, BCD)

Hour (00 to 23, BCD)

Day of month (01 to 31, BCD)

A353.00 to A353.07 | Month (01 to 12, BCD)

A353.08 to A353.15

Year (00 to 99, BCD)

The Calendar/Clock Area can be set with the CX-Programmer, DATE(735)
instruction, or “CLOCK WRITE” FINS command (0702 hex).
Summary of Time Comparison Instructions

The following table shows the function codes, mnemonics, names, and func-
tions of the 18 time comparison instructions.

Code | Mnemonic Name Function

341 |LD=DT LOAD EQUAL True if
AND=DT | AND EQUAL S1=82
OR=DT OR EQUAL

342 |LD<>DT |LOAD NOT EQUAL True if
AND<>DT |AND NOT EQUAL S1#32
OR<>DT |OR NOT EQUAL

343 |LD<DT LOAD LESS THAN True if
AND<DT |AND LESS THAN S1<8S2
OR<DT OR LESS THAN

344 |LD<=DT |LOAD LESS THAN OR EQUAL True if
AND<=DT |AND LESS THAN OR EQUAL S1<32
OR<=DT |OR LESS THAN OR EQUAL

345 |LD>DT LOAD GREATER THAN True if
AND>DT | AND GREATER THAN S1>s2
OR>DT OR GREATER THAN

Comparison I nstructions

Section 3-6

Code | Mnemonic Name Function
346 LD>=DT LOAD GREATER THAN OR EQUAL True if
AND>=DT |AND GREATER THAN OR EQUAL S1=2S2
OR>=DT OR GREATER THAN OR EQUAL
Flags
Name Label Operation
Error Flag ER ON if all 6 of the mask bits (C bits 00 to 05) are ON.
OFF in all other cases.
Greater Than > ONifS; > S,.
Flag OFF in all other cases.
Greater Than or |>= ONif S; = S,.
Equal Flag OFF in all other cases.
Equal Flag = ONifS; =S,.
OFF in all other cases.
Not Equal Flag |= ONif Sy #S,.
OFF in all other cases.
Less Than Flag |< ONif S; < S,.
OFF in all other cases.
Less Than or <= ONif S; < Ss.
Equal Flag OFF in all other cases.
Precautions Time comparison instructions cannot be used as right-hand instructions, i.e.,
another instruction must be used between them and the right bus bar.
Example When CIO 0.00 is ON and the time is 13:00:00, CIO 100.00 is turned ON. The

contents of A351 to A353 (the CPU Unit’s internal calendar/clock data) are
used as the present time data and the contents of D100 to D102 are used as
the comparison time data. The year, month, and day values are masked, so

only

A351
A352
A353

the hour, minute, and second data are compared.
0.00 100.00
— 0y
C DO
S1 A351
S2 D100

7 6 5 4 3 2 1 O

po|-[-]1[1]1]0]0|0] ——— DoOsetto0038 hex
LSeconds compared.
Minutes compared.
———Hours compared.
Day masked.
Month masked.
Year masked.
Shaded data is compared.
15 8 7 0 l 15 8 7 0
Minute Second | «—— S2; D100 00 00
Day of month Hour <—— Sp+1: D101 - 13
Year Month S2+2: D102

Conditions Flags set as soon as
execution condition is turned ON.

219

Comparison I nstructions

Section 3-6

3-6-3 COMPARE: CMP(020)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description

220

Compares two unsigned binary values (constants and/or the contents of
specified words) and outputs the result to the Arithmetic Flags in the Auxiliary

Area.
— | CMP(020)
S, S1: Comparison data 1
S, S2: Comparison data 2
Variations Executed Each Cycle for ON Condition CMP(020)
Executed Once for Upward Differentiation Not supported
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification ICMP(020)

Block program areas

Step program areas | Subroutines | Interrupt tasks

OK OK OK OK
Area S; S,

CIO Area ClIO 0to CIO 6143

Work Area WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area AO to A959

Timer Area TOO0OO to T4095

Counter Area C0000 to C4095

DM Area DO to D32767

Indirect DM addresses in | @ DO to @ D32767

binary

Indirect DM addresses in
BCD

*DO0 to *D32767

Constants

#0000 to #FFFF (binary)
&0 to &65535 (unsigned decimal)

Index Registers

Data Registers DRO to DR15
Index Registers
Indirect addressing using |,IRO to ,IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(=9)IR0 to, —(- -)IR15

CMP(020) compares the unsigned binary data in S; and S, and outputs the

result to Arithmetic Flags (the Greater Than, Greater Than or Equal, Equal,
Less Than or Equal, Less Than, and Not Equal Flags) in the Auxiliary Area.

Unsigned binary
comparison

|_. Arithmetic Flags

(>, >=

=, <=5, <, <>)

Comparison I nstructions

Section 3-6

Condition Flag Status
The following table shows the status of the Arithmetic Flags after execution of
CMP(020). (A status of “---" indicates that the Flag may be ON or OFF.)

CMP(020) Flag status

Result > > = — <= < <>
S1>S, ON ON OFF OFF OFF ON
S1=S, OFF ON ON ON OFF OFF
S1<S, OFF OFF OFF ON ON ON

Using CMP(020) Results in the Program

When CMP(020) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls CMP(020), as shown in the following dia-
gram. In this case, the Equals Flag and output A will be turned ON when S, =

S,.

Correct Use of CMP(020)

| CMP
s1
s2

Arithmetic Flag
(Example: Equal Flag)

A

—C0

Using CMP(020) Results in the Program

Do not program another instruction between CMP(020) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of CMP(020).

Incorrect Use of CMP(020)
X | owe
s1

S2

Instruction

Arithmetic Flag
(Example: Equal Flag)
A

|)

The immediate-refreshing variation ({CMP(020)) can be used with words allo-
cated to external inputs specified in Sy and/or S,. When ICMP(020) is exe-
cuted, input refreshing will be performed for the external input word specified
in S, and/or S, and that refreshed value will be compared.

221

Comparison I nstructions Section 3-6
Flags
Name CX-Programmer Operation
label
Greater Than Flag P_GT ONif Sy > S,.
OFF in all other cases.
Greater Than or Equal Flag | P_GE ONifS; 2 S,.
OFF in all other cases.
Equal Flag P_EQ ONif Sy =S,.
OFF in all other cases.
Not Equal Flag P_NE ONifS; #S,.
OFF in all other cases.
Less Than Flag P_LT ONif S; < S,.
OFF in all other cases.
Less Than or Equal Flag P_LE ONif S; <S,.
OFF in all other cases.

Precautions

Do not program another instruction between CMP(020) and an input condition
that accesses the result of CMP(020) because the other instruction might

change the status of the Arithmetic Flags.

3-6-4 DOUBLE COMPARE: CMPL(060)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

222

Compares two double unsigned binary values (constants and/or the contents
of specified words) and outputs the result to the Arithmetic Flags in the Auxil-

iary Area.
— | CMPL(060)
S, S1: Comparison data 1
S, S2: Comparison data 2
Variations Executed Each Cycle for ON Condition CMPL(060)
Executed Once for Upward Differentiation Not supported
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas

Step program areas

Subroutines | Interrupt tasks

OK OK OK OK
Area ST S,

CIO Area CIO 0to CIO 6142

Work Area WO to W510

Holding Bit Area HO to H510

Auxiliary Bit Area AO to A958

Timer Area TOO0OO to T4094

Counter Area C0000 to C4094

DM Area DO to D32766

Comparison | nstructions Section 3-6

Area S; S,

Indirect DM addresses in | @ DO to @ D32767
binary

Indirect DM addresses in | *DO0 to *D32767
BCD

Constants #00000000 to #FFFFFFFF (binary)
&0 to &4294967295 (unsigned decimal)
Data Registers

Index Registers IRO to IR15
Indirect addressing using |,IRO to ,IR15
Index Registers —2048 to +2047 ,IR0 to —2048 to +2047 ,IR15

DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
—(= IR0 to, -(- -)IR15

Description CMPL(060) compares the unsigned binary data in S; +1, S; and S,+1, S,
and outputs the result to Arithmetic Flags (the Greater Than, Greater Than or
Equal, Equal, Less Than or Equal, Less Than, and Not Equal Flags) in the
Auxiliary Area.

Unsigned binary
comparison

[s | [s1 | [so+1 || s2 |

Arithmetic Flags
(>, >=, 5, <5, 5, <>)
Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
CMPL(060). (A status of “---" indicates that the Flag may be ON or OFF.)

CMPL(060)Result Flag status
> > = = <= < <>
S;+1,S;>S,+1, S, |ON ON OFF OFF OFF ON
S1+1,S1=S,+1, S, |OFF ON ON ON OFF OFF
S1+1,S1<S,+1, S, |OFF OFF OFF ON ON ON

Using CMPL (060) Results in the Program

When CMPL(060) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls CMPL(060), as shown in the following dia-
gram. Here, the Equals Flag and output A will be turned ON when S; +1, S; =

Sy+1, S,.

Correct Use of CMPL(060)

| CMPL
s1
s2

Arithmetic Flag
(Example: Equal Flag)A

—C0)

223

Comparison I nstructions

Section 3-6

Flags

Precautions

224

Using CMPL (060) Results in the Program

Do not program another instruction between CMPL(060) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of CMPL(060).

Incorrect Use of CMPL(060)
X 1 oweL
S1

S2

Instruction

Arithmetic Flag
(Example: Equals Flag)A

—C)

Name CX-Programmer Operation
label

Greater Than Flag P_GT ONif S; +1, S; > Sy+1, S,.
OFF in all other cases.

Greater Than or Equal Flag |P_GE ONif S; +1, S; = S,+1, S,
OFF in all other cases.

Equal Flag P_EQ ONif S; +1, S; = Sy+1, S,.
OFF in all other cases.

Not Equal Flag P_NE ONif S; +1, S; # S,+1, S,.
OFF in all other cases.

Less Than Flag P_LT ONif S; +1, S1 < Sy+1, S,.
OFF in all other cases.

Less Than or Equal Flag P_LE ONif S; +1, S; < S,+1, Ss.
OFF in all other cases.

Do not program another instruction between CMPL(060) and an input condi-
tion that accesses the result of CMPL(060) because the other instruction
might change the status of the Arithmetic Flags.

Comparison I nstructions

Section 3-6

Example

When CIO 0.00 is ON in the following example, the eight-digit unsigned binary

data in ClIO 1001 and CIO 1000 is compared to the eight-digit unsigned
binary data in CIO 1501 and CIO 1500 and the result is output to the Arith-
metic Flags. The results recorded in the Greater Than, Equals, and Less Than
Flags are immediately saved to CIO 100.00 (Greater Than), CIO 100.01
(Equals), and CIO 100.02 (Less Than).

0.00
| CMPL

1000
1500
100.00

100.01

O

100.02

3-6-5 SIGNED BINARY COMPARE:

Purpose

S,+1=clo 1001 S1 =IO 1000 Flag status
1204 5070 Resutt | > | oFF (0)
IComparison = OFF (0)
S2+1=CI0 1501 S2 = CIO 1500 < | oN ()
ABCD EF12

Compares two signed binary values (constants and/or the contents of speci-

fied words) and outputs the result to the Arithmetic Flags in the Auxiliary Area.

Ladder Symbol

— | CPS(114)
S S1: Comparison data 1
Sz S2: Comparison data 2
Variations
Variations Executed Each Cycle for ON Condition CPS(114)
Executed Once for Upward Differentiation Not supported
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification ICPS(114)

Applicable Program Areas

Block program areas

Step program areas | Subroutines | Interrupt tasks

OK OK OK OK
Operand Specifications
Area S; S,
CIO Area CIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area AO to A959

Timer Area

TOO00O to T4095

Counter Area

CO0000 to C4095

DM Area

DO to D32767

binary

Indirect DM addresses in

@ DO to @ D32767

BCD

Indirect DM addresses in

*DO to *D32767

225

Comparison I nstructions

Section 3-6

Description

226

Note

Area S; | S

Constants #0000 to #FFFF (binary)

—32768 to 0 to 32767 (signed decimal)

Data Registers DRO to DR15

Index Registers

Indirect addressing using |,IRO to ,IR15

Index Registers —2048 to +2047 IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

IRO+(++) to ,IR15+(++)

—~(=9)IRO0 to, (- -)IR15

CPS(114) compares the signed binary data in S; and S, and outputs the

result to Arithmetic Flags (the Greater Than, Greater Than or Equal, Equal,
Less Than or Equal, Less Than, and Not Equal Flags) in the Auxiliary Area.

Signed binary

comparison
L Arithmetic Flags
(>, >=,=,<5, <, <>)

CPS(114) treats the data in S; and S, as signed binary data which ranges
from 8000 to 7FFF (-32,768 to 32,767 decimal).

Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
CPS(114). (A status of “---" indicates that the Flag may be ON or OFF)

CPS(114) Flag status

Result > > = = <= < <>
S1>S, ON ON OFF OFF OFF ON
S1=S, OFF ON ON ON OFF OFF
S1<S, OFF OFF OFF ON ON ON

Using CPS(114) Results in the Program

When CPS(114) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls CPS(114), as shown in the following dia-
gram. In this case, the Equals Flag and output A will be turned ON when S, =

S,.

Correct Use of CPS(114)

| CPS
s1
S2

Arithmetic Flag
(Example: Equal Flag)

A

)

Comparison I nstructions

Section 3-6

Flags

Precautions

Using CPS(114) Results in the Program

Do not program another instruction between CPS(114) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of CPS(114).

Incorrect Use of CPS(114)

X | CcPS
s1

S2

Instruction
B

Arithmetic Flag
(Example: Equal Flag)

—C)

The immediate-refreshing variation (\CPS(114)) can be used with words allo-
cated to external inputs specified in S; and/or S,. When ICPS(114) is exe-
cuted, input refreshing will be performed for the external input word specified
in S; and/or S, and that refreshed value will be compared.

Name Label Operation

Greater Than Flag > ONif Sy > S,.

OFF in all other cases.
Greater Than or Equal Flag |>= ONIifS; 2 S,.

OFF in all other cases.
Equal Flag = ONifS; =S,.

OFF in all other cases.
Not Equal Flag <> ONifS; #S,.

OFF in all other cases.
Less Than Flag < ONif S; <S,.

OFF in all other cases.
Less Than or Equal Flag <= ONif S; <S,.

OFF in all other cases.

Do not program another instruction between CPS(114) and an input condition
that accesses the result of CPS(114) because the other instruction might
change the status of the Arithmetic Flags.

3-6-6 DOUBLE SIGNED BINARY COMPARE: CPSL(115)

Purpose

Ladder Symbol

Compares two double signed binary values (constants and/or the contents of
specified words) and outputs the result to the Arithmetic Flags in the Auxiliary
Area.

—] CPSL(115)
S, S1: Comparison data 1
S2 S2: Comparison data 2

227

Comparison I nstructions Section 3-6
Variations
Variations Executed Each Cycle for ON Condition CPSL(115)
Executed Once for Upward Differentiation Not supported
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Operand Specifications

Description

Note

228

Block program areas

Step program areas | Subroutines | Interrupt tasks

OK OK OK OK
Area S; S,

CIO Area CIO 0to CIO 6142

Work Area WO to W510

Holding Bit Area HO to H510

Auxiliary Bit Area AO to A958

Timer Area TOO0OO to T4094

Counter Area C0000 to C4094

DM Area DO to D32766

Indirect DM addresses in | @ DO to @ D32767

binary

Indirect DM addresses in
BCD

*DO to *D32767

Constants

#00000000 to #FFFFFFFF (binary)
—2147483648 to 0 to 2147483647 (signed decimal)

Data Registers

Index Registers

Indirect addressing using
Index Registers

,IRO to ,IR15

—2048 to +2047 ,IR0O to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(=9)IR0 to, —(- -)IR15

CPSL(115) compares the double signed binary data in S; +1, S; and S,+1,
S, and outputs the result to Arithmetic Flags (the Greater Than, Greater Than

or Equal, Equal, Less Than or Equal, Less Than, and Not Equal Flags) in the
Auxiliary Area.

Signed binary
comparison

[sa1 || s1 | [s2+1 | [s2 |

Arithmetic Flags
(>, >=, =, <=, <, <>)
CPSL(115) treats the data in S; and S, as double signed binary data which

ranges from 8000 0000 to 7FFF FFFF (-2,147,483,648 to 2,147,483,647 dec-
imal).

Comparison I nstructions

Section 3-6

Flags

Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
CPSL(115). (A status of “---" indicates that the Flag may be ON or OFF.)

CPSL(115)Result Flag status
> > = = <= < <>
S;+1,S;>S,+1,S, |ON ON OFF OFF OFF ON
S1+1,S;=S,+1,S, |OFF ON ON ON OFF OFF
S1+1,S;<S,+1, S, |OFF OFF OFF ON ON ON

Using CPSL (115) Results in the Program

When CPSL(115) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls CPSL(115), as shown in the following dia-
gram. Here, the Equals Flag and output A will be turned ON when S; +1, S; =

Sy+1, S,.

Correct Use of CPSL(115)

| CcPsL
s1
s2

Arithmetic Flag
(Example: Equal Flag)

A

—C0

Using CPSL (115) Results in the Program

Do not program another instruction between CPSL(115) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of CPSL(115).

Incorrect Use of CPSL(115)

X | CPsL
st

S2

Instruction
B

Arithmetic Flag
(Example: Equal Flag)
A

| ()

Name Label Operation

Greater Than Flag > ONif S; +1, S; > S,+1, S,.
OFF in all other cases.

Greater Than or Equal Flag |>= ONif S5 +1, S; > S,+1, S,.
OFF in all other cases.

229

Comparison I nstructions

Section 3-6

Precautions

Example

Name Label Operation
Equal Flag = ONif S; +1, S; = S,+1, S,.
OFF in all other cases.
Not Equal Flag = ONif Sy +1, Sy #S,+1, S,.
OFF in all other cases.
Less Than Flag < ONif S; +1, S < S,+1, S,.
OFF in all other cases.
Less Than or Equal Flag <= ONif S; +1, S; < S,+1, S,.
OFF in all other cases.

Do not program another instruction between CPSL(115) and an input condi-
tion that accesses the result of CPSL(115) because the other instruction
might change the status of the Arithmetic Flags.

When CIO 0.00 is ON in the following example, the eight-digit signed binary
data in D2 and D1 is compared to the eight-digit signed binary data in D6 and
D5 and the result is output to the Arithmetic Flags.
* If the content of D2 and D1 is greater than that of D6 and D5, the Greater
Than Flag will be turned ON, causing CIO 100.00 to be turned ON.
« If the content of D2 and D1 is equal to that of D6 and D5, the Equals Flag
will be turned ON, causing CIO 100.01 to be turned ON.
« If the content of D2 and D1 is less than that of D6 and D5, the Less Than
Flag will be turned ON, causing CIO 100.02 to be turned ON.

b2 b1 Flag status

cPSL | 1234 | se78 | > | oFf ()

b1 ! e — = | oFf (0)
DS omparison
D6 D5 < | oN©O

100.00 | ABCD | EF12 |

100.01

100.02

3-6-7 MULTIPLE COMPARE: MCMP(019)

Purpose

Ladder Symbol

230

Compares 16 consecutive words with another 16 consecutive words and
turns ON the corresponding bit in the result word where the contents of the
words are not equal.

— | MCMP(019)
S1 S1: First word of set 1
S, S2: First word of set 2
R R: Result word

Comparison I nstructions

Section 3-6

Variations

Applicable Program Areas

Operands

Operand Specifications

Variations Executed Each Cycle for ON Condition MCMP(019)

Executed Once for Upward Differentiation @MCMP(019)

Executed Once for Downward Differentiation | Not supported

Immediate Refreshing Specification Not supported

Block program areas

Step program areas | Subroutines | Interrupt tasks

OK

OK OK OK

S;: First word of set 1

Specifies the beginning of the first 16-word range. S; and S;+15 must be in

the same data area.

S,: First word of set 2

Specifies the beginning of the second 16-word range. S, and S,+15 must be

in the same data area.

R: Result word

Each bit of R contains the result of a comparison between two words in the
16-word sets. Bit n of R (n = 00 to 15) contains the result of the comparison
between words S;+n and S,+n.

15 14 1 0
R | ‘ ‘ ___________________ ‘ ‘
L Comparison result for S1 and S2
Comparison result for S1+1 and S2+1
Comparison result for S1+14 and S2+14
Comparison result for S1+15 and S2+15

Area S S, R

ClO Area ClIO 0to CIO 6128 ClO0to
ClO 6143

Work Area WO to W496 WO to W511
Holding Bit Area HO to H496 HO to H511
Auxiliary Bit Area AO to A944 A448 to A959
Timer Area TOO0OO to T4080 TOO00O to T4095
Counter Area C0000 to C4080 C0000 to C4095
DM Area DO to D32752 DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary

Indirect DM addresses
in BCD

*DO to *D32767

Constants

Data Registers

--- DRO to DR15

Index Registers

Indirect addressing
using Index Registers

,IRO to ,IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—~(=-)IRO to, —(- -)IR15

231

Comparison I nstructions Section 3-6

Description MCMP(019) compares the contents of the 16 words S, through S;+15 to the
contents of the 16 words S, through S,+15, and turns ON the corresponding
bit in word R when the contents are not equal.

The content of S; is compared to the content of S,, the content of S;+1 to the
content of S,+1, ..., and the content of S;+15 to the content of S,+15. Bit n of
R is turned OFF if the content of S;+n is equal to the content of S,+n; bit n of

R is turned ON if the contents are not equal. If the contents of all 16 pairs of
words are the same, the Equals Flag will turn ON after the instruction has
been executed.

Comparison R
$1 s2 — |_|9 0:Words are equal.
S141 — 8241 — 1 1:Words aren't equal.
S1+14 $2+14 B
S1+15 ~—— 82415 — | |15
Flags
Name Label Operation
Error Flag ER OFF
Equals Flag = ON if the result word is 0000.
(The two 16-word sets contain the same data.)
OFF in all other cases.
Example When CIO 0.00 is ON in the following example, MCMP(019) compares words

D100 through D115 in order to words D200 through D215 and turns ON the
corresponding bits in D300 when the words are not equal.

0.00
MCMP

S D100 R: D300

s2| D200 R

o/ D300 S1:D100| 1 2 3 4 S2:D200(1 2 3 4 |——| o0 | o0
D101 5 5 7 8 D201|9o A B ¢ |[—| 1 1
D102|9 A B C D202| 5 5 7 8 — 1] 2
D103|D E F © D203| D E F O |[——| 0|3
D104| 0 2 0 © D204/ 0 2 0 0 |[—| 0| 4
D105| 1 2 3 4 D205| 5 0 7 8 |——| 1|5
D106| 5 5 7 8 D206|9 A B C |—| 1 | 5
D107|9 A B ¢ p—— D207|D E F 0 |—[1|7
D108(D E F 9 p— D208 1 2 3 4 — 1 8
D109| 1 2 3 4 D209| 5 0 7 8 |——| 1|0
D110 5 0 7 8 D210 0 2 0 0 — | 1 10
D111({9 A B C D211 1 2 3 4 — 1 11
D112| 0 2 0 © D212| 0 2 0 0 |——| 0| 12
D113| 1 2 3 4 D213| 5 0 7 8 |——~| 1| 13
D114| 5 0 7 8 [— D214|{0 A B C |[——| 1 [14
D115|9 A B C |+— D215|1 2 3 4 [——| 1 [15

232

Comparison | nstructions Section 3-6

3-6-8 TABLE COMPARE: TCMP(085)

Purpose Compares the source data to the contents of 16 consecutive words and turns
ON the corresponding bit in the result word when the contents of the words
are equal.

Ladder Symbol
— 1 TCMP(085)

S S: Source data
T T: First word of table
R R: Result word

Variations

Variations Executed Each Cycle for ON Condition TCMP(085)
Executed Once for Upward Differentiation @TCMP(085)
Executed Once for Downward Differentiation | Not supported

Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas | Step program areas | Subroutines | Interrupt tasks
OK OK OK OK

T: First word of table

Specifies the beginning of the 16-word table. T and T+15 must be in the same
data area.

Operands

R: Result word

Each bit of R contains the result of a comparison between S and a word in the
16-word table. Bit n of R (n = 00 to 15) contains the result of the comparison
between S and T+n.

T Comparison data 0
T+1 Comparison data 1
to to
T+15 Comparison data 15
1514 10
ol IR |

| |
LL Comparison result for Sand T
Comparison result for S and T+1
Comparison result for S and T+14
Comeparison result for S and T+15

Operand Specifications

Area S T R

CIO Area ClO0to ClO0to ClO0to
ClO 6143 ClO 6128 ClO 6143

Work Area WO to W511 WO to W496 WO to W511
Holding Bit Area HO to H511 HO to H496 HO to H511
Auxiliary Bit Area A0 to A959 A0 to A944 A448 to A959
Timer Area TOOO0O to T4095 | TOOOO to T4080 | TOOOO to T4095
Counter Area C0000 to C4095 |CO0000 to C4080 |C0000 to C4095
DM Area DO to D32767 DO to D32752 DO to D32767

233

Comparison I nstructions Section 3-6
Area S | T R
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #0000 to #FFFF | ---
(binary)
&0 to &65535
(unsigned deci-
mal)
-32768t0 0 to
32767 (signed
decimal)
Data Registers DRO to DR15 DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

Description

Flags

Example

234

using Index Registers

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15

DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
—(= IR0 to, —(- -)IR15

TCMP(085) compares the source data (S) to each of the 16 words T through
T+15 and turns ON the corresponding bit in word R when the data are equal.
Bit n of R is turned ON if the content of T+n is equal to S and it is turned OFF
if they are not equal.

S is compared to the content of T and bit 00 of R is turned ON if they are
equal or OFF if they are not equal, S is compared to the content of T+1 and bit
01 of R is turned ON if they are equal or OFF if they are not equal, ..., and S is
compared to the content of T+15 and bit 15 of R is turned ON if they are equal
or OFF if they are not equal.

Comparison R
s T o 1:Data are equal.
I:I — 0: Data aren't equal.
T+1 —_— 1
T+14 _ : 14
T+15 — | |15
Name Label Operation
Error Flag ER OFF
Equals Flag = ON if the result word is 0000.
(None of the 16 words in the table equals S.)
OFF in all other cases.

When CIO 0.00 is ON in the following example, TCMP(085) compares the
content of D100 with the contents of words D200 through D215 and turns ON
the corresponding bits in D300 when the contents are equal or OFF when the
contents are not equal.

Comparison I nstructions

Section 3-6

0.00
 —
s| D100
T D200
p| D300

R: D300

}

: D200

D201

D202

D203

D204

D205

D206

D207

D208

D209

D210

D211

D212

D213

D214

I

ARRRRARRARRRRAN

o|lg|Y|w|=|o|O|Y | u|l=|o|lo|o|o|o|o

D215

wlm|P|leo|v|em|P|lo(v(vjo|lw|[a|o]|™

Pla|lm|~N|l@||qm|lm(N|w|>|lo(x|M]|o|>

—=lo|lO|®|+|=cfO|O|s|=|O|=(0|O|=

3-6-9 BLOCK COMPARE: BCMP(068)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

@™ N O U s O N - O

)
& m N s O

-
w

Compares the source data to 16 ranges (defined by 16 lower limits and 16
upper limits) and turns ON the corresponding bit in the result word when the
source data is within a range.

— | BCMP(068)
S S: Source data
B B: First word of block
R R: Result word
Variations Executed Each Cycle for ON Condition BCMP(068)
Executed Once for Upward Differentiation @BCMP(068)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

B: First word of block

Specifies the beginning of a 32-word block (16 lower/upper limit pairs). B and
B+31 must be in the same data area.

235

Comparison I nstructions

Section 3-6

Operand Specifications

Description

236

R: Result word

Each bit of R contains the result of a comparison between S and one of the 16
ranges defined the 32-word block. Bit n of R (n = 00 to 15) contains the result

of the comparison between S and the nth pair of words.

15 14 1 0
ol I |
L_ Comparison result for S
and range B <> B+1
Comparison result for S
Comparison result for S and range B+2 <> B+3
and range B+28 <> B+29
Comparison result for S
and range B+30 < B+31
Area S B R
ClO Area ClO0to ClO0to ClO0to
ClO 6143 ClO 6112 ClO 6143
Work Area WO to W511 WO to W480 WO to W511
Holding Bit Area HO to H511 HO to H480 HO to H511
Auxiliary Bit Area AO to A959 AO to A928 A448 to A959
Timer Area TOOO0O to T4095 | TOOOO to T4064 | TOOOO to T4095
Counter Area CO0000 to C4095 |CO0000 to C4064 |CO0000 to C4095
DM Area DO to D32767 DO to D32736 DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #0000 to #FFFF | ---
(binary)

&0 to &65535
(unsigned deci-
mal)

—32768 to O to
32767 (signed

using Index Registers

decimal)
Data Registers DRO to DR15 DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)
—(=-)IR0 to, -(- -)IR15

BCMP(068) compares the source data (S) to the 16 ranges defined by pairs
of lower and upper limit values in B through B+31. The first word in each pair
(B+2n) provides the lower limit and the second word (B+2n+1) provides the
upper limit of range n (n = 0 to 15). If S is within any of these ranges (inclusive
of the upper and lower limits), the corresponding bit in R is turned ON. The
rest of the bits in R will be turned OFF

B <S< B+l Bit 00 of R
B+2 <S< B+3 Bit 01 of R
B+4 <S< B+5 Bit 02 of R
B+6 <S< B+7 Bit 03 of R
B+8 <S< B+9 Bit 04 of R
B+10 <S< B+11 Bit 05 of R

Comparison I nstructions

Flags

Precautions

Example
0.00
——scmp
D100
D200
D300

B+12
B+14
B+16
B+18
B+20
B+22
B+24
B+26
B+28
B+30

VAN VAN VAN VAN VANRN VAR VAN VANR VAN VAN
nNnuuumuunuumuuvmwumwumwonm
IA A IA N A IN N IN N IA

Section 3-6
B+13 Bit 06 of R
B+15 Bit 07 of R
B+17 Bit 08 of R
B+19 Bit 09 of R
B+21 Bit 10 of R
B+23 Bit 11 of R
B+25 Bit 12 of R
B+27 Bit 13 of R
B+29 Bit 14 of R
B+31 Bit 15 of R

For example, bit 00 of R is turned ON if S is within the first range (B < S <
B+1), bit 01 of R is turned ON if S is within the second range (B+2 < S < B+3),
..., and bit 15 of R is turned ON if S is within the fifteenth range (B+30 < S <
B+31). All other bits in R are turned OFF.

Name Label Operation
Error Flag ER OFF
Equals Flag = ON if the result word is 0000.

(S is not within any of the 16 ranges.)
OFF in all other cases.

An error will not occur if the lower limit is greater than the upper limit, but 0
(not within the range) will be output to the corresponding bit of R.

When CIO 0.00 is ON in the following example, BCMP(068) compares the
content of D100 with the 16 ranges defined in D200 to D231 (i.e., D200 and
D201, D202 and D203, etc.) and turns ON the corresponding bits in D300
when S is within the range or OFF when S is not within the range.

T

R: D300

e
D200 | 0 3 A 1 toD201 |0 4 00 |——| 0|0
D202 (o 0 0 o toD203 |0 300 |——| 0|1
D204 |0 0 0 0O topD205 |0 4 00 |—| 1|2
D206 [0 3 A 1 top27 |0 400 |——~| 0|3
D208 [0 3 A o t0D209 |0 4 0 0 |—| 1|4
D210 [0 0 00 | toD211 |0 400 |——| 15
D212 [0 0 0 o top213 |0 300 |—=| 05
D214 10 3 A 1 toD215| 0 4 0 0O —~T7
D216 [0 0 0 o0 top17|0 5 0 0 |—=| 1|38
D218 [0 0 0 O t0p219 |0 8 A D |—| 1|0
D220 0 0 0 o topp1|0 300 |[——| 0] 10
D222 |10 3 A 1 to p223 | 0 4 00 —~T11
D224 |10 0 0 O top225| 0 4 0 O —-T 12
D226 | 0 0 0 O to p227| 0 0 0 O #T 13
D228 |0 3 A 1 to p229g| 0 0 0 O ——T 14
D230 (0 0 0 O top231 |0 0 0 0 — o |15

237

Comparison I nstructions Section 3-6

3-6-10 EXPANDED BLOCK COMPARE: BCMP2(502)

Purpose Compares the source data to up to 256 ranges (defined by 256 lower limits
and 256 upper limits) and turns ON the corresponding bit in the result word
when the source data is within a range.

Ladder Symbol

— | BCMP2(502)
S S: Source data
B B: First word of block
R R: First result word
Variations
Variations Executed Each Cycle for ON Condition BCMP2(502)

Executed Once for Upward Differentiation @BCMP2(502)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas | Step program areas | Subroutines | Interrupt tasks
OK OK OK OK

Operands B: First word of block

Specifies the beginning of a comparison block containing up to 513 words
including up to 256 lower/upper limit pairs). All words must be in the same

data area.
Comparison block
Word 15 87 0
B 00 hex | Last range "N" N: (28 ttg ZFSFsi;ex
rRange 0 B+1 Range 0 value A
B+2 Range 0 value B
Range 1 B+3 Range 1 value A
B+4 Range 1 value B
Range 2 B+5 Range 2 value A
B+6 Range 2 value B
(Fj?;itr;ge < Range 15 B+31 Range 15 value A
B+32 Range 15 value B
Range 16 B+33 Range 16 value A
B+34 Range 16 value B
Range 17 B+35 Range 17 value A
B+36 Range 17 value B
Range 18 B+37 Range 18 value A
B+38 Range 18 value B
Range NB+2N+1 Range N value A
B+2(N+1) Range N value B

238

Comparison I nstructions

Section 3-6

Operand Specifications

R: First result word

Each bit of each R word contains the result of a comparison between S and
one of the ranges defined the comparison block. The maximum number of
result words is 16, i.e., m equals O to 15.

15 14 n 0
S I) N N O

LComparison result for
S and range 16m
——Comparison result for
Comparison result for Sandrange 16m +n
S and range 16m + 14
Comeparison result for
S and range 16m + 15

Area S B R
ClO Area ClO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area AO to A959 A448 to A959
Timer Area TOO00O to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #0000 to #FFFF
(binary)
&0 to &65535
(unsigned deci-
mal)
-327681t0 0
32767 (signed
decimal)
Data Registers DRO to DR15 -—-
Index Registers
Indirect addressing ,IRO to ,IR15
using Index Registers | _2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
—(-=-)IRO to, —(— -)IR15

239

Comparison I nstructions

Section 3-6

Description

240

BCMP2(502) compares the source data (S) to the ranges defined by pairs of
lower and upper limit values in the comparison block. If S is within any of
these ranges (inclusive of the upper and lower limits), the corresponding bits
in the result words (R to R+15 max.) are turned ON. The rest of the bits in R
will be turned OFF.

The number of ranges is determined by the value N set in the lower byte of B.
N can be between 0 and 255. The upper byte of B must be 00 hex.

Comparison block
15 87 0

B N: 00 to FF hex (0 to 255)

Result words

Comparison ranges R Bt
;> B+1|Range Ovalue A |Range Ovalue B [B+2 - 0
i B+3|Range 1value A |Range Lvalue B |B+4 -+ 1
Source data
> B+5|Range 2 value A [Range 2 value B |B+6 -+ 2
S

*> B+31|Range 15 value A}:zange 15 value B| B+32 *D 15

R+1 Bit
" B+33|Range 16 value ARange 16 value B| B+34 0
" B+35|Range 17 value ARange 17 value B| B+36 1
" B+37|Range 18 value ARange 18 value B| B+38 - 2

B B+2N+1|Range N value A [Range N value B I B+2N+2 *D
. _
Ranges

In range: ON
Not in range: OFF

Number of Ranges

The number of ranges in the comparison block is set in the first word of the
block. Up to 256 ranges can be set.

Setting Ranges

The values A and B for each range will determine how the comparison oper-
ates depending on which value is larger, as shown below.
- If Value A < Value B

Then, Value A < Comparison range < Value B

>

<

Comparison range

Value A Value B

- If Value A > Value B
Then, Comparison range < Value B and Value A < Comparison range

< -
Comparison Comparison
range range
Value B Value A
Example

When B+1 < B+2

If B+1 < S < B+2, then bit 0 of R will turn ON,

If B+3 < S < B+4, then bit 1 of R will turn ON,

If S < B+5 and B+6 < S, then bit 2 of R will turn OFF, and
If S < B+7 and B+8 < S, then bit 3 of R will turn OFF.

Comparison | nstructions Section 3-6

When B+1 > B+2

If S<B+2 and B+1 < S, then bit 0 of R will turn ON,

If S <B+4 and B+3 < S, then bit 1 of R will turn ON,

If B+6 < S < B+5, then bit 2 of R will turn OFF, and

If B+8 < S < B+7, then bit 3 of R will turn OFF.

Results Storage Location

The results are output to corresponding bits in word R. If there are more than

16 comparison ranges, consecutive words following R will be used.The maxi-
mum number of result words is 16, i.e., m equals O to 15.

15 14 n 0
R+m| | | |
mL [[| Il
LComparison result for
S and range 16m
Comparison result for
Comparison result for Sand range 16m +n
S and range 16m + 14
Comparison result for
S and range 16m + 15
Flags
Name Label Operation
Error Flag ER OFF
Example When CIO 0.00 is ON in the following example, BCMP2(502) compares the

content of CIO 1000 with the 24 ranges defined in D200 through D247 (N = 17
hex = 23 decimal, i.e., 24 ranges) and turns ON the corresponding bits in
CIO 2000 and CIO 2001 when S is within the range and OFF when S is not
within the range. For example, if the source data in CIO 1000 is in the range
defined by D201 and D202, then bit 00 of CIO 2000 is turned ON and if it in
not in the range, then bit 00 of CIO 2000 is turned OFF. Likewise, the source
data in CIO 1000 is compared to the ranges defined by D203 and D204, D247
and D248, and the other words in the comparison block, and bit 1 in
CIO 2000, bit 7 in CIO 2001, and the other bits in the result words are manip-
ulated according to the results of comparison.

0.00 T:D200| 0 0 1 7 R: CIO 2000

——BCcMP2 Bit
1000| s:cio000[0 1 7 5 F——— D201 oo0oo0 | 0100 D202 —|[0 | o
D200 D203 080 | 0 D204 —| 1 |1
2000 - D205 160 0260 D206 —| 1 |2
— D231 1200 | 1800 p2z2 —>[0 |15
R: CIO 2001
- D233 1500] 0500 p23s —[1 |o
> D235 1 900 | 0100 D236 —| 0
- D237 1800 | 0200 D238 —| 1 |2
L pua7l 0100] 2000 D248 —»| 1|7

241

Comparison I nstructions Section 3-6

3-6-11 AREA RANGE COMPARE: ZCP(088)

Purpose Compares a 16-bit unsigned binary value (CD) with the range defined by
lower limit LL and upper limit UL. The results are output to the Arithmetic
Flags.
Ladder Symbol
— ZCP(088)
CD CD: Comparison Data
LL LL: Lower limit of range
UL: Upper limit of range
UL
Variations
Variations Executed Each Cycle for ON Condition ZCP(088)
Executed Once for Upward Differentiation Not supported
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas | Step program areas | Subroutines | Interrupt tasks

OK OK OK OK
Operand Specifications
Area CD LL UL
CIO Area CIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959
Timer Area TOO0OO to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM addresses in | @ DO to @ D32767
binary
Indirect DM addresses in | *D0 to *D32767
BCD
Constants #0000 to #FFFF (binary)
&0 to &65535 (unsigned decimal)
Data Registers DRO to DR15
Index Registers
Indirect addressing using |,IRO to ,IR15
Index Registers —2048 to +2047 IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
,—(-=-)IRO to, —(— -)IR15

Description ZCP(088) compares the 16-bit signed binary data in CD with the range
defined by LL and UL and outputs the result to the Greater Than, Equals, and
Less Than Flags in the Auxiliary Area. (The Less Than or Equal, Greater
Than or Equal, and Not Equal Flags are left unchanged.)

242

Comparison | nstructions Section 3-6

Arithmetic Flag Status
The following table shows the status of the Arithmetic Flags after execution of

ZCP(088).

ZCP(088)Result Flag status

> = <

CD > UL ON OFF OFF
CD=UL OFF ON
LL<CD< UL
CD=LL
CD<LL OFF ON

Using ZCP(088) Results in the Program

When ZCP(088) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls ZCP(088), as shown in the following dia-
gram. In this case, the Equals Flag and output A will be turned ON when
LL <CD < UL.

Correct Use of ZCP(088)

I} zcpP

CD
LL
UL

A

i O
11

Arithmetic Flag

(Example: Equal Flag)

Do not program another instruction between ZCP(088) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of ZCP(088).

Incorrect Use of ZCP(088)

X I} ZCPL
cD

LL
UL

Instruction
B

A

“ O
11

Arithmetic Flag

(Example: Equal Flag)

Flags
Name Label Operation
Error Flag ER ON if LL > UL.
Greater Than Flag > ON if CD > UL.
OFF in all other cases.
Greater Than or Equal Flag |>= Left unchanged.

243

Comparison I nstructions Section 3-6

Name Label Operation

Equal Flag = ONif LL <CD < UL.
OFF in all other cases.

Not Equal Flag <> Left unchanged.

Less Than Flag < ON if CD < LL.
OFF in all other cases.

Less Than or Equal Flag <= Left unchanged.

Negative Flag N Left unchanged.

Precautions Do not program another instruction between ZCP(088) and an input condition

that accesses the result of ZCP(088) because the other instruction might
change the status of the Arithmetic Flags.

Example When CIO 0.00 is ON in the following example, the 16-bit unsigned binary
data in DO is compared to the range 0005 to 001F hex (5 to 31 decimal) and
the result is output to the Arithmetic Flags.

CIO 100.00 is turned ON if 0005 hex < content of DO < 001F hex.
CIO 100.01 is turned ON if the content of DO > 001F hex.
ClIO 100.02 is turned ON if the content of DO < 0005 hex.

O‘.ﬂ)o LL CD uL Arithmetic
ZcP
] DO Flags
CD Do oooshex <[| <O00IFhex —— = ON
LL #5
uL #1F DO
[1>ooirhex. ——= > on
100.00 DO
11
100.01
—0
11
>
100.02
I
11
<

3-6-12 DOUBLE AREA RANGE COMPARE: ZCPL(116)

Purpose Compares a 32-bit unsigned binary value (CD+1, CD) with the range defined
by lower limit (LL+1, LL) and upper limit (UL+1, UL). The results are output to
the Arithmetic Flags.

Ladder Symbol

— ZCPL(116)
CD CD: First word of Comparison Data
LL LL: First word of Lower Limit
UL: First word of Upper Limit
UL
Variations
Variations Executed Each Cycle for ON Condition ZCPL(116)
Executed Once for Upward Differentiation Not supported
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

244

Comparison I nstructions

Applicable Program Areas

Operand Specifications

Description

Section 3-6
Block program areas | Step program areas | Subroutines | Interrupt tasks
OK OK OK OK
Area CD LL UL
CIO Area CIO0to CIO 6142
Work Area WO to W510
Holding Bit Area HO to H510
Auxiliary Bit Area A0 to A958
Timer Area TOO0OO to T4094
Counter Area CO0000 to C4094
DM Area DO to D32766
Indirect DM addresses in | @ DO to @ D32767
binary
Indirect DM addresses in | *D0 to *D32767
BCD
Constants #0000 0000 to #FFFF FFFF (binary)
&0 to &4294967295 (unsigned decimal)
Data Registers
Index Registers IRO to IR15
Indirect addressing using |,IRO to ,IR15
Index Registers —2048 to +2047 IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
,—(-=-)IRO to, —(— -)IR15

ZCPL(116) compares the 32-bit signed binary data in CD+1, CD with the
range defined by LL+1, LL and UL+1, UL and outputs the result to the Greater
Than, Equals, and Less Than Flags in the Auxiliary Area. (The Less Than or
Equal, Greater Than or Equal, and Not Equal Flags are left unchanged.)

Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
ZCPL(116).

ZCPL(116)Result Flag status
> = <
CD+1, CD > UL+1, UL ON OFF OFF
CD+1, CD = UL+1, UL OFF ON

LL+1, LL < CD+1, CD < UL+1, UL
CD+1, CD = LL+1, LL
CD+1, CD < LL+1, LL OFF ON

Using ZCPI (116) Results in the Program

When ZCPL(116) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls ZCPL(116).

Do not program another instruction between ZCPL(116) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag.

245

Comparison I nstructions

Section 3-6

The operation of ZCPL(116) is almost identical to that of ZCP(088) except that
ZCPL(116) compares 32-bit values instead of 16-bit values. Refer to 3-6-11
AREA RANGE COMPARE: ZCP(088) for diagrams showing how to use
results in the program and an example program section.

Flags
Name Label Operation
Error Flag ER ON if LL+1, LL > UL+1, UL.
Greater Than Flag > ON if CD > UL+1, UL.
OFF in all other cases.
Greater Than or Equal Flag |>= Left unchanged.
Equal Flag = ONif LL+1, LL < CD+1, CD < UL+1, UL.
OFF in all other cases.
Not Equal Flag <> Left unchanged.
Less Than Flag < ONif CD+1,CD < LL+1, LL.
OFF in all other cases.
Less Than or Equal Flag <= Left unchanged.
Negative Flag N Left unchanged.
Precautions Do not program another instruction between ZCPL(116) and an input condi-

tion that accesses the result of ZCPL(116) because the other instruction
might change the status of the Arithmetic Flags.

246

Data Movement I nstructions

Section 3-7

3-7 Data Movement Instructions

This section describes instructions used to move data in various ways.

Instruction Mnemonic Function | Page
code

MOVE MOV 021 247
MOVE NOT MVN 022 248
DOUBLE MOVE MOVL 498 250
DOUBLE MOVE NOT MVNL 499 251
MOVE BIT MOVB 082 253
MOVE DIGIT MOVD 083 255
MULTIPLE BIT TRANSFER XFRB 062 257
BLOCK TRANSFER XFER 070 260
BLOCK SET BSET 071 262
DATA EXCHANGE XCHG 073 264
DOUBLE DATA EXCHANGE XCGL 562 265
SINGLE WORD DISTRIBUTE |DIST 080 267
DATA COLLECT COLL 081 269
MOVE TO REGISTER MOVR 560 270
MOVE TIMER/COUNTER PV | MOVRW 561 272
TO REGISTER

3-7-1 MOVE: MOV(021)

Purpose Transfers a word of data to the specified word.

Ladder Symbol
— | MOV(021)

S S: Source
D D: Destination

Variations

Variations Executed Each Cycle for ON Condition MOV(021)
Executed Once for Upward Differentiation @MOV(021)
Executed Once for Downward Differentiation | Not supported

Immediate Refreshing Specification IMOV(021)
Combined Executed Once and Destination Refreshed I@MOV(021)
Variations Immediately for Upward Differentiation

Applicable Program Areas

Block program areas | Step program areas

Subroutines

Interrupt tasks

OK OK OK OK
Operand Specifications
Area S D
CIO Area ClO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area AO to A959 A448 to A959
Timer Area TO0O0O to T4095
Counter Area C0000 to C4095
DM Area DO to D32767

247

Data Movement I nstructions Section 3-7
Area S D
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #0000 to #FFFF (binary) [--
Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

using Index Registers

—2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(=-) IR0 to, (- -) IR15

Description

Transfers S to D. If S is a constant, the value can be used for a data setting.

— Sourceword __ _

Bit status not Destination word

= 1 changed.

MOV(021) has an immediate refreshing variation (!MOV(021)). External input
bits can be specified for S and external output bits can be specified for D.
Input bits used for S will refreshed just before, and output bits used for D will
be refreshed just after execution.

Flags

Name

Label

Operation

Error Flag ER

OFF

Equals Flag =

ON if the data being transferred is 0000.
OFF in all other cases.

Negative Flag N

ON if the leftmost bit of the data being transferred is 1.
OFF in all other cases.

Example
copied to D100.

0.00

MOV
1000
D100

When CIO 0.00 is ON in the following example, the content of CIO 1000 is

3-7-2 MOVE NOT: MVN(022)

Purpose

Ladder Symbol

MVN(022)

S

D

248

Transfers the complement of a word of data to the specified word.

S: Source

D: Destination

Data Movement | nstructions Section 3-7
Variations

Variations Executed Each Cycle for ON Condition MVN(022)

Executed Once for Upward Differentiation @MVN(022)
Executed Once for Downward Differentiation | Not supported

Immediate Refreshing Specification Not supported
Applicable Program Areas

Block program areas | Step program areas | Subroutines | Interrupt tasks

OK OK OK OK
Operand Specifications

Area S D

CIO Area CIO0to CIO 6143

Work Area WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area AO to A959 A448 to A959

Timer Area TOO0O to T4095

Counter Area C0000 to C4095

DM Area DO to D32767

Indirect DM addresses | @ DO to @ D32767

in binary

Description

Flags

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants

#0000 to #FFFF (binary)

using Index Registers

Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

—2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(=-) IR0 to, —-(--) IR15

MVN(022) inverts the bits in S and transfers the result to D. The content of S

is left unchanged.

_ Sourceword __ _

Destination word

; —
Bit status

inverted.

Name Label Operation
Error Flag ER OFF
Equals Flag = ON if the content of D is 0000 after execution.

OFF in all other cases.

Negative Flag N

ON if the leftmost bit of D is 1 after execution.
OFF in all other cases.

249

Data Movement I nstructions

Section 3-7

Example

When CIO 0.00 is ON in the following example, the status of the bits in
CIO 200 is inverted and the result is copied to D100.

0.00

MVN
200
D100

Cl02001 001fo010f000011101|

0 2

0 D

:

D100 jo110ft101[t111/po1o0]

6 D

3-7-3 DOUBLE MOVE: MOVL(498)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

250

F 2

Transfers two words of data to the specified words.

— | MOVL(498)
S S: First source word
D D: First destination word
Variations Executed Each Cycle for ON Condition MOVL(498)
Executed Once for Upward Differentiation @MOVL(498)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK OK OK OK
Area S D

CIO Area CIO 0to CIO 6142

Work Area WO to W510

Holding Bit Area HO to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area TOO0O0O to T4094
Counter Area C0000 to C4094
DM Area DO to D32766

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants #00000000 to #FFFFFFFF | ---
(binary)

Data Registers

Data Movement | nstructions Section 3-7
Area S D
Index Registers IRO to IR15
Indirect addressing ,IRO to ,IR15

using Index Registers | _o048 to +2047, IR0 to —2048 to +2047, IR15

DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
—(=-) IR0 to, 1—(— -) IR5

Description MOVL(498) transfers S+1 and S to D+1 and D. If S+1 and S are constants,

the value can be used for a data setting.

D+1

D
LTI

S S+
WL T

Bit status
not changed.

Flags

Name Label
Error Flag ER
Equals Flag =

Operation

OFF

ON if the contents of D+1 and D are 0000 0000 after exe-
cution.

OFF in all other cases.
ON if the leftmost bit of D+1 is 1 after execution.
OFF in all other cases.

Negative Flag N

Example When CIO 0.01 is ON in the following example, the content of D1001 and

D1000 are copied to D2001 and D2000.

0.01

MOVL
D1000
D2000

D1001
D1000

}_»{02001
D2000
3-7-4 DOUBLE MOVE NOT: MVNL(499)

Purpose

Ladder Symbol

Transfers the complement of two words of data to the specified words.

| MVNL(499)
IS S: First source word
D D: First destination word
Variations
Variations Executed Each Cycle for ON Condition MVNL(499)
Executed Once for Upward Differentiation @MVNL(499)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

251

Data Movement I nstructions

Section 3-7

Applicable Program Areas

Operand Specifications

Description

Flags

252

Block program areas

Step program areas | Subroutines | Interrupt tasks

using Index Registers

OK OK OK OK
Area S D
CIO Area CIO 0to CIO 6142
Work Area WO to W510
Holding Bit Area HO to H510
Auxiliary Bit Area A0 to A958 A448 to A958
Timer Area TOO0OO to T4094
Counter Area CO0000 to C4094
DM Area DO to D32766
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #00000000 to #FFFFFFFF | ---
(binary)
Data Registers ---
Index Registers
Indirect addressing ,IRO to ,IR15

—2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15
JRO+(++) t0 IR15+(++)

—~(=-) IRO to, (- -) IR15

MVNL(499) inverts the bits in S+1 and S and transfers the result to D+1 and
D. The contents of S+1 and S are left unchanged.
S S+ - D D+1
MO IO — — - OO
Bit status
inverted.
Name Label Operation
Error Flag ER OFF
Equals Flag = ON if the contents of D+1 and D are 0000 0000 after exe-
cution.
OFF in all other cases.
Negative Flag N ON if the leftmost bit of D+1 is 1 after execution.
OFF in all other cases.

Data Movement I nstructions Section 3-7

Examples When CIO 0.01 is ON in the following example, the status of the bits in D1001
and D1000 are inverted and the result is copied to D2001 and D2000. (The
original contents of D1001 and D1000 are left unchanged.)

0.01
F——mMunNL
D1000
D2000:

D1001fe 12 3
D1000 ¢ AB C

!
D2001F EDC
D2000 8 5 4 3
3-7-5 MOVE BIT: MOVB(082)

Purpose Transfers the specified bit.

Ladder Symbol

— MOVB(082)
S S: Source word or data
C C: Control word
D D: Destination word
Variations
Variations Executed Each Cycle for ON Condition MOVB(082)

Executed Once for Upward Differentiation @MOVB(082)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas | Step program areas | Subroutines | Interrupt tasks
OK OK OK OK

Operands C: Control Word
The rightmost two digits of C indicate which bit of S is the source bit and the
leftmost two digits of C indicate which bit of D is the destination bit.

15 8 7 0
clL_m | n |

Source bit: 00 to OF

(0 to 15 decimal)

Destination bit: 00 to OF
(0 to 15 decimal)

Operand Specifications

Area S C D
CIO Area CIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511

253

Data Movement | nstructions Section 3-7
Area S C D
Auxiliary Bit Area A0 to A959 A448 to A959
Timer Area TOO0O0O to T4095

Counter Area

C0000 to C4095

using Index Registers

DM Area DO to D32767

Indirect DM addresses | @ DO to @ D32767

in binary

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants #0000 to #FFFF | Specified values | ---
(binary) only

Data Registers DRO to DR15

Index Registers

Indirect addressing ,IRO to ,IR15

—2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(=-) IR0 to, —-(--) IR15

Description MOVB(082) copies the specified bit (n) from S to the specified bit (m) in D.
The other bits in the destination word are left unchanged.
c| m l n |
M]
s
D| |
Note The same word can be specified for both S and D to copy a bit within a word.
Flags
Name Label Operation
Error Flag ER ON if the rightmost and leftmost two digits of C are not
within the specified range of 00 to OF.
OFF in all other cases.

Examples When CIO 0.00 is ON in the following example, the 5™ pit of the source word
(DO) is copied to the 12 pit of the destination word (D1000) in accordance
with the control word’s value of 0CO05.

0.00
——Amove
s DO
o| D200
0| D1000 5 a7 0
C: D200 0cC 5 05

15 14 57 5 10

s:00 [] EEEEE EEEER

1514 12 87 10

pptooo [{ FTiT T rii 17T

254

Data Movement I nstructions

Section 3-7

3-7-6 MOVE DIGIT: MOVD(083)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

Operand Specifications

Transfers the specified digit or digits. (Each digit is made up of 4 bits.)

— | MOVD(083)
S S: Source word or data
C C: Control word
D D: Destination word
Variations Executed Each Cycle for ON Condition MOVD(083)
Executed Once for Upward Differentiation @MOVD(083)
Executed Once for Downward Differentiation | Not supported

Immediate Refreshing Specification Not supported

Block program areas | Step program areas | Subroutines | Interrupt tasks

OK OK OK OK

S: Source Word
The source digits are read from right to left, wrapping back to the rightmost
digit (digit 0) if necessary.
15 12 11 8 7 4 3 0
s | pigit3 { Digit2 | Digit1 i Digito

C: Control Word

The first three digits of C indicate the first source digit (m), the number of dig-
its to transfer (n), and the first destination digit (£), as shown in the following
diagram.

15 12 11 8 7 4 3 0

LFirst digitinS(m): 0to 3

Number of digits (n): 0 to 3
First digit in D (¢): 0 to 3 0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

Always 0.

D: Destination Word
The destination digits are written from right to left, wrapping back to the right-
most digit (digit 0) if necessary.

15 12 11 8 7 4 3 0

D| Digit 3 | Digit 2 \ Digit1 | Digit 0 |

Area S | c D
CIO Area CIO0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511

255

Data Movement | nstructions Section 3-7
Area S C D
Auxiliary Bit Area A0 to A959 A448 to A959
Timer Area TOO0O0O to T4095

Counter Area

C0000 to C4095

using Index Registers

DM Area DO to D32767

Indirect DM addresses | @ DO to @ D32767

in binary

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants #0000 to #FFFF | Specified values | ---
(binary) only

Data Registers DRO to DR15

Index Registers

Indirect addressing ,IRO to ,IR15

—2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(=-) IR0 to, —-(--) IR15

MOVD(083) copies the content of n digits from S (beginning at digit m) to D

(beginning at digit £). Only the specified digits are changed; the rest are left

If the number of digits being read or written exceeds the leftmost digit of S or
D, MOVD(083) will wrap to the rightmost digit of the same word.

15 12 11 8 7 48 0
0 § | | n i m

|

The same word can be specified for both S and D to copy a bit within a word.

Operation

Description
unchanged.
c|
s |
o |
Note
Flags
Name Label
Error Flag ER

ON if one of the first three digits of C is not within the
specified range of 0 to 3.

OFF in all other cases.

256

Data Movement I nstructions Section 3-7

Examples Four-digit Transfer

When CIO 0.00 is ON in the following example, four digits of data are copied
from CIO 200 to CIO 300. The transfer begins with the digit 1 of CIO 200 and
digit 0 or CIO 300, in accordance with the control word’s value of 0031.

0.00
F——movp
S 200
o] D300 5 1211 87 43 0
D 300 C:D300| o o | 3 | 1 |
Digit no. » 3 2] P 5 First digit in S: Digit 1
[I I 1 1
15 241 07 43 0
s:200f0 1+ [2 |38 | 4 |«
O Number of digits: 3 (4 digits)
Digitno. — g5 2 1 0
[Al I 1 1
15 1211 07 43 g _ .
D:300[4 [1 [2 & | First digit in D: Digit 0
Note After reading the leftmost digit of S (digit 3), MOVD(083) wraps to the right-
most digit (digit 0).
Examples of C
The following diagram shows examples of data transfers for various values of
C.

S D S D s D s D
Digit 0 Digit 0 Digit0 }———|Digit0 Digit 0 Digit 0 Digit 0 Digit 0
Digit 1 Digit 1 Digit 1 Digit 1 Digit 1 Digit 1 Digit 1 Digit 1
Digit 2 s Digit 2 Digit 2 Digit 2 Digit 2 Digit 2 Digit 2 Digit 2
Digit 3 Digit 3 Digit 3 }———| Digit 3 Digit 3 Digit 3 Digit 3 Digit 3

3-7-7 MULTIPLE BIT TRANSFER: XFRB(062)

Purpose Transfers the specified number of consecutive bits.
Ladder Symbol
— 1 XFRB(062)
C C: Control word
S S: First source word
D D: First destination word
Variations
Variations Executed Each Cycle for ON Condition XFRB(062)

Executed Once for Upward Differentiation @XFRB(062)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas | Step program areas | Subroutines | Interrupt tasks
OK OK OK OK

257

Data Movement I nstructions Section 3-7

Operands C: Control Word

The first three digits of C indicate the first source digit (m), the number of dig-
its to transfer (n), and the first destination digit (£), as shown in the following
diagram.

15 87 43 0
T

LFirst bitinS ({):0to F

First bitin D (m): 0to 3
Number of digits (n):
00 to FF (0 to 255)

S: First Source Word

Specifies the first source word. Bits are read from right to left, continuing with
consecutive words (up to S+16) when necessary.

15 0

to to

S+15 max.

D: First Destination Word

Specifies the first destination word. Bits are written from right to left, continu-
ing with consecutive words (up to D+16) when necessary.

15 0
D
to to
D+15 max.
Operand Specifications
Area C S D

CIO Area ClO 0to CIO 6143

Work Area WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area AO to A959 A448 to A959

Timer Area TO0O0O to T4095

Counter Area C0000 to C4095

DM Area DO to D32767

Indirect DM addresses | @ DO to @ D32767

in binary

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants Specified values | ---
only

Data Registers DRO to DR15

Index Registers

Indirect addressing ,IRO to ,IR15

using Index Registers | _2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15
JRO+(++) to 5+(++)
—(=-) IRO to, —-(— -) IR15

258

Data Movement I nstructions

Section 3-7

Description

Flags

Precautions

Examples

XFRB(062) transfers up to 255 consecutive bits from the source words (begin-
ning with bit £ of S) to the destination words (beginning with bit m of D). Bits in
the destination words that are not overwritten by the source bits are left
unchanged.

The beginning bits and number of bits are specified in C, as shown in the fol-
lowing diagram.

It is possible for the source words and destination words to overlap. By trans-
ferring data overlapping several words, the data can be packed more effi-
ciently in the data area. (This is particularly useful when handling position
data for position control.)

Since the source words and destination words can overlap, XFRB(062) can
be combined with ANDW(034) to shift m bits by n spaces.

Name Label Operation
Error Flag ER OFF

Up to 255 bits of data can be transferred per execution of XFRB(062).
Be sure that the source words and destination words do not exceed the end of
the data area.

When CIO 0.00 is ON in the following example, the 20 bits beginning with
CIlO 200.06 are copied to the 20 bits beginning with CIO 300.00.

0.00
——xFRB
C D100
S 200
D 300 15 07 43 0
c:p100 [1 4 1 0 | 8 |

20 bits 4——-——1

259

Data Movement | nstructions Section 3-7
3-7-8 BLOCK TRANSFER: XFER(070)
Purpose Transfers the specified number of consecutive words.
Ladder Symbol
— | XFER(070)
N N: Number of words
S S: First source word
D D: First destination word
Variations
Variations Executed Each Cycle for ON Condition XFER(070)
Executed Once for Upward Differentiation @XFER(070)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Operands

Operand Specifications

260

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

N: Number of Words

Specifies the number of words to be transferred. The possible range for N is
0000 to FFFF (0 to 65,535 decimal).

S: First Source Word

Specifies the first source word.

15

0

to to

S+(N-1)

D: First Destination Word
Specifies the first destination word.

15

0

to to

D+(N-1)
Area N S D

CIO Area CIO 0to CIO 6143
Work Area WO to W511

Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959 A448 to A959
Timer Area TOO0OO to T4095
Counter Area CO0000 to C4095

DM Area DO to D32767

Indirect DM addresses
in binary

@ DO to @ D32767

Data Movement I nstructions Section 3-7

Description

Flags

Precautions

Example

Area N S | D

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants #0000 to #FFFF | ---
(binary) or &0 to
&65535

Data Registers DRO to DR15 -—-

Index Registers

Indirect addressing ,IRO to ,IR15

using Index Registers | _2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15
IRO+(++) to ,IR15+(++)
—~(=-) IRO to, —(- -) IR15

XFER(070) copies N words beginning with S (S to S+(N-1)) to the N words
beginning with D (D to D+(N-1)).

$ D

N words —~
to to

S+(N-1) (DNt "

It is possible for the source words and destination words to overlap, so
XFER(070) can perform word-shift operations.

—XFER D100
: ™ D102
&10
D100 :
D102 D109
™~ pm
Name Label Operation
Error Flag ER OFF

Be sure that the source words (S to S+N-1) and destination words (D to
D+N-1) do not exceed the end of the data area.

Some time will be required to complete XFER(070) when a large number of
words is being transferred. In this case, the XFER(070) transfer might not be
completed if a power interruption occurs during execution of the instruction.

When CIO 0.00 is ON in the following example, the 10 words D100 through
D109 are copied to D200 through D209.

0.00
XFER
&10 N
D100 D100 D200
D200 D101 D201
D102 L10 o D202
words
D109] D209

261

Data Movement | nstructions Section 3-7
3-7-9 BLOCK SET: BSET(071)
Purpose Copies the same word to a range of consecutive words.
Ladder Symbol
— | BSET(071)
s S: Source word
St St: Starting word
E E: End word
Variations
Variations Executed Each Cycle for ON Condition BSET(071)
Executed Once for Upward Differentiation @BSET(071)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Operands

Note

Operand Specifications

262

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

S: Source Word

Specifies the source data or the word containing the source data.

St: Starting Word

Specifies the first word in the destination range.

E: End Word

Specifies the last word in the destination range.

15

0

St

to

E

Source data

-

St

||

L— E

Destination range

St and E must be in the same data area.

Area S St E
CIO Area CIO0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area

TOO00O0 to T4095

Counter Area

C0000 to C4095

Data Movement I nstructions

Section 3-7

Description

Flags

Precautions

using Index Registers

Area S | St | E
DM Area DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #0000 to #FFFF | ---
(binary)
Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

—2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(--)IROto, 15-(--) IR

BSET(071) copies the same source word (S) to all of the destination words in

the range St to E.

Source word Destination words

L J7—=

——

Name Label

Operation

Error Flag ER

ON if St is greater than E.
OFF in all other cases.

Be sure that the starting word (St) and end word (E) are in the same data area

and that St < E.

Some time will be required to complete BSET(071) when the source data is
being transferred to a large number of words. In this case, the BSET(071)
transfer might not be completed if a power interruption occurs during execu-

tion of the instruction.

Example When CIO 0.00 is ON in the following example, the source data in D100 is
copied to D200 through D209.
0.00
F——{BsET

s D100

st 0200 s:p100[7 25 8}~ stox0[1 254

E D209 —— D201 |1 2 3 4
——— D202 1 2 3 4
——— D203 (1 2 3 4
— D204 [1 2 3 4
——— D205 (1 2 3 4
—— D206 |1 2 3 4
—— D207 |1 2 3 4
—— D208 [1 2 3 4
> E:D209 |1 2 3 4

263

Data Movement | nstructions Section 3-7
3-7-10 DATA EXCHANGE: XCHG(073)
Purpose Exchanges the contents of the two specified words.
Ladder Symbol
— | XCHG(073)
El E1: First exchange word
E2 E2: Second exchange word
Variations
Variations Executed Each Cycle for ON Condition XCHG(073)
Executed Once for Upward Differentiation @XCHG(073)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Operand Specifications

Block program areas

Step program areas | Subroutines | Interrupt tasks

OK OK OK OK
Area El E2

CIO Area CIO 0to CIO 6143

Work Area WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area A448 to A959

Timer Area TOO0O0O to T4095

Counter Area CO0000 to C4095

DM Area DO to D32767

Indirect DM addresses | @ DO to @ D32767

in binary

Indirect DM addresses
in BCD

*DO to *D32767

Constants

using Index Registers

Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

—2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(--) IR0 to, —-(--) IR15

Description

Flags

264

XCHG(073) exchanges the contents of E1 and E2.

El

—_—

E2

There are no flags affected by this instruction.

Data Movement I nstructions Section 3-7

Example When CIO 0.00 is ON in the following example, the content of D100 is

exchanged with the content of D200.

0.00

F_____

XCHG
D100
D200

DI00|1 2 3 4 |[«=D200|A B C D

l

3-7-11 DOUBLE DATA EXCHANGE: XCGL(562)

Purpose Exchanges the contents of a pair of consecutive words with another pair of

consecutive words.

Ladder Symbol

| XCGL(562)
E1l E1: First exchange word
E2 E2: Second exchange word
Variations
Variations Executed Each Cycle for ON Condition XCGL(562)
Executed Once for Upward Differentiation @XCGL(562)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Operand Specifications

Area E1l E2
CIO Area CIO 0to CIO 6142
Work Area WO to W510
Holding Bit Area HO to H510
Auxiliary Bit Area A448 to A958
Timer Area TOO0OO to T4094
Counter Area CO0000 to C4094
DM Area DO to D32766
Indirect DM addresses | @ DO to @ D32767
in binary

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants

Data Registers

265

Data Movement I nstructions

Section 3-7
Area El E2
Index Registers IRO to IR15
Indirect addressing ,IRO to ,IR15

using Index Registers | _o048 to +2047, IR0 to —2048 to +2047, IR15

DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
—(--) IR0 to, —-(--) IR15

Description XCHG(073) exchanges the contents of E1+1 and E1 with the contents of

E2+1 and E2.

El E1+1 E2 E2+1

HEEEEEE e B EEEEEE

To exchange 3 or more words, use XFER(070) to transfer the words to a third
set of words (a buffer) as shown in the following diagram.

E1l

1st XFER(070)

operation
\ Buffer

2nd XFER(070)
operation

- e

3rd XFER(070)
operation

Flags There are no flags affected by this instruction.

Example When CIO 0.01 is ON in the following example, the contents of D100 and

D101 are exchanged with the contents of D200 and D201.

0.01
——xceL
D100
D200

D100|1 2 3 4 D200 (¢ A B C
- —
D101|s s 7 & D201 (p E F o

!

D100 |9 A B C D200 (1 2 8 4
D101 |D E F o0 D201 |5 s

266

Data Movement I nstructions

Section 3-7

3-7-12 SINGLE WORD DISTRIBUTE: DIST(080)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

Operand Specifications

Transfers the source word to a destination word calculated by adding an offset
value to the base address.

— | DIST(080)
S S: Source word
Bs Bs: Destination base address
Of Of: Offset
Variations Executed Each Cycle for ON Condition DIST(080)
Executed Once for Upward Differentiation @DIST(080)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Bs: Destination Base Address

Specifies the destination base address. The offset is added to this address to
calculate the destination word.

Of: Offset

This value is added to the base address to calculate the destination word. The
offset can be any value from 0000 to FFFF (0 to 65,535 decimal), but Bs and
Bs+Of must be in the same data area.

15

0

Bs

to o
Bs+Of

Area S Bs of

CIO Area ClO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area AO to A959 A448 to A959 A0 to A959

Timer Area TOO00O to T4095
Counter Area C0000 to C4095
DM Area DO to D32767

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants #0000 to #FFFF | --- #0000 to #FFFF
(binary) (binary) or &0 to
&65535
Data Registers DRO to DR15 - DRO to DR15

267

Data Movement I nstructions Section 3-7

Area S Bs | of
Index Registers
Indirect addressing ,IRO to ,IR15

using Index Registers | _o048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—~(=-) IR0 to, —(~ -) IR15

Description DIST(080) copies S to the destination word calculated by adding Of to Bs.
The same DIST(080) instruction can be used to distribute the source word to
various words in the data area by changing the value of Of.

Bs Of n

P
Bs+n
Flags
Name Label Operation
Error Flag ER OFF
Equals Flag = ON if the source data is 0000.
OFF in all other cases.
Negative Flag N ON if the leftmost bit of the source data is 1.
OFF in all other cases.
Precautions Be sure that the offset does not exceed the end of the data area, i.e., Bs and
Bs+Of are in the same data area.
Example When CIO 0.00 is ON in the following example, the contents of D100 will be

copied to D210 (D200 + 10) if the contents of D300 is 10 (OA hexadecimal).
The contents of D100 can be copied to other words by changing the offset in
D300.

DIST
S D100

or | oacc D2
ol D300 Bs: D200/ —,— Of: D300

D201 4-digit hexadecimal

0.00 S: D100
{

Copied by DIST(080).

Offset +10 words

D210

268

Data Movement I nstructions

Section 3-7

3-7-13 DATA COLLECT: COLL(081)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

Operand Specifications

Transfers the source word (calculated by adding an offset value to the base
address) to the destination word.

— | COLL(081)
Bs Bs: Source base address
Of Of: Offset
D D: Destination word
Variations Executed Each Cycle for ON Condition COLL(081)
Executed Once for Upward Differentiation @COLL(081)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Bs: Source Base Address
Specifies the source base address. The offset is added to this address to cal-

culate the source word.

Of: Offset

This value is added to the base address to calculate the source word. The off-
set can be any value from 0000 to FFFF (0 to 65,535 decimal), but Bs and
Bs+Of must be in the same data area.

15

0

Bs

to to

Of

Area Bs Of D

CIO Area ClIO 0to CIO 6143

Work Area WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area AO to A959 A448 to A959

Timer Area TO0O0O0 to T4095

Counter Area C0000 to C4095

DM Area DO to D32767

Indirect DM addresses | @ DO to @ D32767

in binary

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants #0000 to #FFFF | ---
(binary) or &0 to
&65535

Data Registers DRO to DR15

269

Data Movement I nstructions Section 3-7

Area Bs of | D
Index Registers
Indirect addressing ,IRO to ,IR15

using Index Registers | _o048 to +2047, IR0 to —2048 to +2047, IR15

DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
—(--) IR0 to, —-(--) IR15

Description COLL(081) copies the source word (calculated by adding Of to Bs) to the des-
tination word. The same COLL(081) instruction can be used to collect data
from various source words in the data area by changing the value of Of.

n~--

Bs+n

Flags
Name Label Operation
Error Flag ER OFF
Equals Flag = ON if the source data is 0000.
OFF in all other cases.
Negative Flag N ON if the leftmost bit of the source data is 1.
OFF in all other cases.
Precautions Be sure that the offset does not exceed the end of the data area, i.e., Bs and
Bs+Of are in the same data area.
Example When CIO 0.00 is ON in the following example, the contents of D110 (D100 +

10) will be copied to D300 if the content of D200 is 10 (OA hexadecimal). The
contents of other words can be copied to D300 by changing the offset in

D200.
o 000 A
F——coLL _ D200
Bs: D100 . .
Bs D100 4-digit hexadecimal
D101
Of D200
Offset +10 words
D D300

D110 g

Copied by COLL(081).

|

D300

3-7-14 MOVE TO REGISTER: MOVR(560)

Purpose Sets the PLC memory address of the specified word, bit, or timer/counter
Completion Flag in the specified Index Register. (Use MOVRW(561) to set the
PLC memory address of a timer/counter PV in an Index Register.)

Ladder Symbol

— | MOVR(560)
S S: Source (desired word or bit)
D D: Destination (Index Register)

270

Data Movement I nstructions Section 3-7
Variations
Variations Executed Each Cycle for ON Condition MOVR(560)
Executed Once for Upward Differentiation @MOVR(560)
Executed Once for Downward Differentiation | Not supported

Applicable Program Areas

Operands

Operand Specifications

Description

Immediate Refreshing Specification Not supported

Block program areas | Step program areas | Subroutines | Interrupt tasks
OK OK OK OK

D: Destination
The destination must be an Index Register (IR0 to IR15).

Area S D
CIO Area CIO 0to CIO 6143
CIO 0.00to CIO 6143.15
Work Area WO to W511
W0.00 to W511.15
Holding Bit Area HO to H511
HO0.00 to H511.15
Auxiliary Bit Area AO to A447
A448 to A959

A0.00 to A447.15
A448.00 to A959.15

TOO00O to T4095
(Completion Flag)

Timer Area

CO0000 to C4095
(Completion Flag)

Counter Area

Task Flag TKOO to TK31

DM Area DO to D32767 -

Indirect DM addresses | ---
in binary

Indirect DM addresses | ---
in BCD

Constants

Data Registers

Index Registers | IRO to IR15

Indirect addressing
using Index Registers

MOVR(560) finds the PLC memory address (absolute address) of S and
writes that address in D (an Index Register).

Internal /O memory address of S

Index Register
o[]
If a timer or counter is specified in S, MOVR(560) will write the PLC memory

address of the timer/counter Completion Flag in D. Use MOVRW(561) to write
the PLC memory address of the timer/counter PV in D.

271

Data Movement I nstructions

Section 3-7

Flags

Precautions

Example

Name Label Operation
Error Flag ER OFF or unchanged
Equals Flag = OFF or unchanged
Negative Flag N OFF or unchanged

MOVR(560) cannot set the PLC memory addresses of timer/counter PVs.
Use MOVRW(561) to set the PLC memory addresses of timer/counter PVs.

The contents of an index register in an interrupt task is not predictable until it
is set. Be sure to set a register using MOVR(560) in an interrupt task before
using the register.

Any changes to the contents of an IR or DR made in an interrupt task will not
affect the contents of the register in a cyclic task.

When CIO 0.00 is ON in the following example, MOVR(560) writes the PLC
memory address of CIO 200 to IRO.

0.00 Internal I/O memory address
S 20| Uy
D IR0

Internal 1/O memory
address of CIO 200

3-7-15 MOVE TIMER/COUNTER PV TO REGISTER: MOVRW(561)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

Operand Specifications

272

Sets the PLC memory address of the specified timer or counter’s PV in the
specified Index Register. (Use MOVR(560) to set the PLC memory address of
a word, bit, or timer/counter Completion Flag in an Index Register.)

—1 MOVRW(561)
S S: Source (desired TC number)
D D: Destination (Index Register)

Executed Each Cycle for ON Condition MOVR(561)

Executed Once for Upward Differentiation @MOVR(561)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Variations

Block program areas | Step program areas | Subroutines | Interrupt tasks
OK OK OK OK

D: Destination
The destination must be an Index Register (IR0 to IR15).

Area S | D
CIO Area
Work Area
Holding Bit Area

Data Movement I nstructions Section 3-7

Description

Flags

Precautions

Example

Area S D
Auxiliary Bit Area
Timer Area TO0O0O0 to T4095
(present value)
Counter Area C0000 to C4095
(present value)
DM Area
Indirect DM addresses | ---
in binary
Indirect DM addresses | ---
in BCD
Constants
Data Registers ---
Index Registers IRO to IR15

Indirect addressing

using Index Registers

MOVRW(561) finds the PLC memory address for the PV of the timer or
counter specified in S and writes that address in D (an Index Register).

S —

Timer/counter PV only

Index Register
o []
MOVRW(561) will set the PLC memory address of the timer or counter’s PV in

D. Use MOVR(560) to set the PLC memory address of the timer or counter
Completion Flag.

Name Label Operation
Error Flag ER OFF or unchanged
Equals Flag = OFF or unchanged
Negative Flag N OFF or unchanged

MOVRW(561) cannot set the PLC memory addresses of data area words,
bits, or timer/counter Completion Flags. Use MOVR(560) to set these PLC
memory addresses.

When CIO 0.01 is ON in the following example, MOVRW(561) writes the PLC
memory address for the PV of timer TO to IR1.

0.01 Internal I/O memory address
e s o5
S ol
D (R1

IR1|/0000EO0OO

273

Data Shift I nstructions

Section 3-8

3-8 Data Shift Instructions

This section describes instructions used to shift data within or between words,
but in differing amounts and directions.

Instruction Mnemonic Function code Page
SHIFT REGISTER SFT 010 274
REVERSIBLE SHIFT REGIS- |SFTR 084 276
TER
ASYNCHRONOUS SHIFT ASFT 017 279
REGISTER
WORD SHIFT WSFT 016 281
ARITHMETIC SHIFT LEFT ASL 025 283
DOUBLE SHIFT LEFT ASLL 570 284
ARITHMETIC SHIFT RIGHT ASR 026 286
DOUBLE SHIFT RIGHT ASRL 571 287
ROTATE LEFT ROL 027 289
DOUBLE ROTATE LEFT ROLL 572 290
ROTATE LEFT WITHOUT RLNC 574 295
CARRY
DOUBLE ROTATE LEFT WITH- | RLNL 576 297
OUT CARRY
ROTATE RIGHT ROR 028 292
DOUBLE ROTATE RIGHT RORL 573 294
ROTATE RIGHT WITHOUT RRNC 575 299
CARRY
DOUBLE ROTATE RIGHT RRNL 577 300
WITHOUT CARRY
ONE DIGIT SHIFT LEFT SLD 074 302
ONE DIGIT SHIFT RIGHT SRD 075 303
SHIFT N-BIT DATA LEFT NSFL 578 305
SHIFT N-BIT DATA RIGHT NSFR 579 307
SHIFT N-BITS LEFT NASL 580 309
DOUBLE SHIFT N-BITS LEFT |NSLL 582 311
SHIFT N-BITS RIGHT NASR 581 314
DOUBLE SHIFT N-BITS NSRL 583 317
RIGHT

3-8-1 SHIFT REGISTER: SFT(010)

Purpose

Ladder Symbol

Variations

274

Operates a shift register.

Data input SFT(010)

Shift input St St: Starting word

Reset input E E: End word

Variations Executed Each Cycle for ON Condition SFT(010)
Executed Once for Upward Differentiation Not supported
Executed Once for Downward Differentiation | Not supported

Immediate Refreshing Specification Not supported

Data Shift I nstructions

Section 3-8

Applicable Program Areas

Note

Operand Specifications

Description

Block program areas | Step program areas Subroutines | Interrupt tasks
Not allowed OK OK OK

St and E must be in the same data area.

Area St E
CIO Area CIO0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A448 to A959
Timer Area
Counter Area
DM Area

Indirect DM addresses | ---
in binary

Indirect DM addresses | ---
in BCD

Constants

Data Registers ---

Index Registers

Indirect addressing ,IRO to ,IR15

using Index Registers | _»04g to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

When the execution condition on the shift input changes from OFF to ON, all
the data from St to E is shifted to the left by one bit (from the rightmost bit to
the leftmost bit), and the ON/OFF status of the data input is placed in the
rightmost bit.

St+1, St+2, ... St

Lost

Flags

Precautions

/ LVLVLV U VPV U VULV .V VPV WV V. VPV V. VULV VPPV VLV UUUUUUUUUUUUUUUU\

Status of data input
for each shift input

Name Label Operation

Error Flag ER ON if the indirect IR address for St and E is not in the CIO,
AR, HR, or WR data areas.

OFF in all other cases.

The bit data shifted out of the shift register is discarded.

When the reset input turns ON, all bits in the shift register from the rightmost
designated word (St) to the leftmost designated word (E) will be reset (i.e., set
to 0). The reset input takes priority over other inputs.

St must be less than or equal to E, but even when St is set to greater than E
an error will not occur and one word of data in St will be shifted.

When St and E are designated indirectly using index registers and the actual
addresses in 1/0O memory are not within memory areas for data, an error will
occur and the Error Flag will turn ON.

275

Data Shift I nstructions

Section 3-8

Examples

Shift Register Exceeding 16 Bits

The following example shows a 48-bit shift register using words CIO 1000 to
CIO 1002. A 1-s clock pulse is used so that the execution condition produced
by CIO 0.05 is shifted into a 3-word register between CIO 1000.00 and
ClO 1002.15 every second.

0.05 Data input
i} SFT
E:CIO 1002 St+1:CIO 1001 St: ClO 1000 _Contents of

P 1s - I— 1000 ~r O e ~~"Cl100.05
m Shift input 1002 Lost 154 10 {514 10 1514 10

| M1 (11 111

(1-s clock)
0

3-8-2 REVERSIBLE SHIFT REGISTER: SFTR(084)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

Note

Operand Specifications

276

Creates a shift register that shifts data to either the right or the left.

SFTR(084)
C C: Control word
St St: Starting word
E E: End word
Variations Executed Each Cycle for ON Condition SFTR(084)

Executed Once for Upward Differentiation @SFTR(084)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas | Step program areas Subroutines | Interrupt tasks
OK OK OK OK

C: Control Word

15| 14| 13| 12

Shift direction
1 (ON): Left
0 (OFF): Right

Data input

Shift input

Reset

St and E must be in the same data area.

Area C St E
ClO Area ClO 0to CIO 6143
Work Area WO to W511

Data Shift I nstructions Section 3-8
Area c | St E
Holding Bit Area HO to H511
Auxiliary Bit Area AO to A959 | A448 to A959
Timer Area TO0O0O to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants
Data Registers DRO to DR15 -—-
Index Registers
Indirect addressing ,IRO to ,IR15

Description

Flags

Precautions

using Index Registers | _2048 to +2047, IR0 to —2048 to +2047, IR15

DRO to DR15, IR0 to IR15
JRO+(++) t0 IR15+(++)
~(= IR0 to, —(- -)IR15

When the execution condition of the shift input bit (bit 14 of C) changes to ON,
all the data from St to E is moved in the designated shift direction (designated
by bit 12 of C) by 1 bit, and the ON/OFF status of the data input is placed in
the rightmost or leftmost bit. The bit data shifted out of the shift register is
placed in the Carry Flag (CY).

15141312
c
~ E ~ ala e
cY 15 0 15 -reeee- 0 15 St oDatainput
O [] [T ---nee- []----- ---------- [
™ ~ ~ ~ e
Datainput 15 E 0 15 ------- 0 15 St g cy Shift direction
| I EEEEEEEE [] [MT-eeeee-] ----- [T-ee--- 10
Name Label Operation
Error Flag ER ON when St is greater than E.
OFF in all other cases.
Carry Flag CY ON when 1 is shifted into it.
OFF when 0 is shifted into it.
OFF when reset is set to 1.

The above shift operations are applicable when the reset bit (bit 15 of C) is set
to OFF.

When reset (bit 15 of C) turns ON all bits in the shift register, from St to E will
be reset (i.e., set to 0).

When St is greater than E, an error will be generated and the Error Flag will
turn ON.

277

Data Shift I nstructions

Section 3-8

Examples

278

0.00

F——-{sFTR
c HO
St D100
E D200

Shifting Data

If shift input HO.14 goes ON when CIO 0.00 is ON and the reset bit H0.15 is
OFF, words D100 through D102 will shift one bit in the direction designated by
HO0.12 (e.g., 1: right) and the contents of input bit H0.13 will be shifted into the
rightmost bit of D100. The contents of bit 15 of D102 will be shifted to the
Carry Flag (CY).

1514‘ 12
c:Ho [o]1fi1]

0
HERRRRRERER
I— Shift direction

Shift input: 1

.y

Reset input: 0

TN ~
D102

H]% ' {:ﬁ ‘{ L { :ﬂ { K Data input:
------- D101 D100 HO0.13

Resetting Data
If HO.14 is ON when CIO 0.00 is ON, and the reset bit, H0.15, is ON, words
D100 through D102 and the Carry Flag will be reset to OFF.

Controlling Data

Resetting Data

All bits from St to E and the Carry Flag are set to 0 and no other data can be
received when the reset input bit (bit 15 of C) is ON.

(o[olo[e[a[o]o]e[e a[e]ole[s[e]o] [o]

Shifting Data Left (from Rightmost to Leftmost Bit)

When the shift input bit (bit 14 of C) is ON, the contents of the input bit (bit 13
of C) is shifted to bit 00 of the starting word, and each bit thereafter is shifted
one bit to the left. The status of bit 15 of the end word is shifted to the Carry
Flag.

Data
o input

Cy 15
JLDIITTITTTTI T 1] [

~ 7

Shifting Data Right (from Leftmost to Rightmost Bit

When the shift input bit (bit 14 of C) is ON, the contents of the input bit (bit 13
of C) (I/O) is shifted to bit 15 on the end word, and each bit thereafter is
shifted one bit to the right. The status of bit 00 of the starting word is shifted to
the Carry Flag.

Data
input 15 0 CY
J1

bd [TTTTTTTITTTTITITTT] [

Data Shift I nstructions

Section 3-8

3-8-3 ASYNCHRONOUS SHIFT REGISTER: ASFT(017)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

Note

Operand Specifications

Shifts all non-zero word data within the specified word range either towards St
or toward E, replacing 0000 hex word data.

— | ASFT(017)
C C: Control word
St St: Starting word
E E: End word
Variations Executed Each Cycle for ON Condition ASFT(017)
Executed Once for Upward Differentiation @ASFT(017)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

C: Control Word

| 15] 1413 |12

Shift direction

0: Non-zero data shifted toward E

1: Non-zero data shifted toward St
Shift Enable Bit

0: Shift disabled

1: Shift enabled

Clear Bit

0: Data not reset

1: All data from St to E is reset

St and E must be in the same data area.

Area C St E
CIO Area CIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area AO to A959 A448 to A959
Timer Area TOO0O to T4095
Counter Area C0000 to C4095
DM Area DO to D32767

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses
in BCD

*DO to *D32767

Constants

Data Registers

DRO to DR15 -

279

Data Shift I nstructions Section 3-8
Area C St | E
Index Registers
Indirect addressing ,IRO to ,IR15

Description

Flags

Precautions

280

using Index Registers | _o048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—~(= IR0 to, (- -)IR15

When the Shift Enable Bit (bit 14 of C) is ON, all of the words with non-zero
content within the range of words between St and E will be shifted one word in
the direction determined by the Shift Direction Bit (bit 13 of C) whenever the
word in the shift direction contains all zeros. If ASFT(017) is repeated suffi-
cient times, all all-zero words will be replaced by non-zero words. This will
result in all the data between St and E being divided into zero and non-zero
data.

15 1413 12
C | -----------
St LL Shift direction
0 0 0 0 ;
) Convert Shift enabled
- Clear
0 0 0 0
) Convert
E
St
Non-zero data
Zero data
E 0
Name Label Operation
Error Flag ER ON when St is greater than E.

ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified (CP1H only).

OFF in all other cases.

When the Clear Flag (bit 15 of C) goes ON, all bits in the shift register, from St
to E, will be reset (i.e., set to 0). The Clear Flag has priority over the Shift
Enable Bit (bit 14 of C).

When St is greater than E an error will be generated and the Error Flag will
turn ON.

Data Shift I nstructions Section 3-8

Examples Shifting Data:
If the Shift Enable Bit, H0.14, goes ON when CIO 0.00 is ON, all words with
non-zero data content from D100 through D109 will be shifted in the direction
designated by the Shift Direction Bit, H0.13 (e.g., 1: Toward St) if the word to
the left of the non-zero data is all zeros.

0.00
1 ASFT
C HO
St D100 15 1413 9
el Dbioo cro [[[T II[TIT]]
Shift direction
1: Non-zero data shifted toward E
Shift Enable Bit: 1
Clear
Before ASFT(017) is executed After one execution After two executions
Stt D1ooj 1 2 3 4 1 2 3 4 1 2 3 4
Non-zero data is D101|la ©© © o0 5 6 7 8 5 6 7 8
shifed toward St | 0) P <]2 A B C
D1030000><9ABC o 0 o0 0
D104 9 A B C 0O 0 0 0 0O 0 o0 0
D050 © © 0 0O 0 o0 o o 0 0 ©
D106l © 0 O 0 0 0 0 0 0 0 ©
D107|0 © ©0 O 0O 0 o0 o 0 0 0 ©
D108 o © o0 O 0O 0 0 O 0 0 0 0
E: D090 ©o o o 0O 0 0 o o 0 0 ©
Purpose Shifts data between St and E in word units.
Ladder Symbol
WSFT(016)
S S: Source word
St St: Starting word
E E: End word
Variations
Variations Executed Each Cycle for ON Condition WSFT(016)

Executed Once for Upward Differentiation @WSFT(016)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas | Step program areas Subroutines | Interrupt tasks
OK OK OK OK

Note St and E must be in the same data area.

Operand Specifications

Area S St E
CIO Area CIO 0to CIO 6143
Work Area WO to W511

281

Data Shift I nstructions Section 3-8
Area S | St | E
Holding Bit Area HO to H511
Auxiliary Bit Area AO to A959 | A448 to A959
Timer Area TO0O0O to T4095
Counter Area CO0000 to C4095
DM Area DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #0000 to #FFFF | ---
(binary)
Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15
using Index Registers | _»04g to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
,—(-=-)IRO to, —(- -)IR15

Description

Flags

Precautions

WSFT(016) shifts data from St to E in word units and the data from the source
word S is places into St. The contents of E is lost.

15 N0 5N 18 Q
Lost [T i I R [|
Name Label Operation
Error Flag ER ON when St is greater than E.

OFF in all other cases.

When St is greater than E, an error will be generated and the Error Flag will
turn ON.

Note When large amounts of data are shifted, the instruction execution time is quite
long. Be sure that the power is not cut while WSFT(016) is being executed,
causing the shift operation to stop halfway through.

Examples When CIO 0.00 is ON, data from D100 through D102 will be shifted one word
toward E. The contents of HO will be stored in D100 and the contents of D102
will be lost.

0.00
F——wsFT
s HO
St D100
E D102 S: HO

282

/-I:

St: D100

i

E: D102 St: D101
Lost |

Data Shift I nstructions Section 3-8
3-8-5 ARITHMETIC SHIFT LEFT: ASL(025)
Purpose Shifts the contents of Wd one bit to the left.
Ladder Symbol
— 1 ASL(025)
wd Wd: Word
Variations
Variations Executed Each Cycle for ON Condition ASL(025)
Executed Once for Upward Differentiation @ASL(025)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas

Step program areas Subroutines | Interrupt tasks

OK OK OK OK
Operand Specifications
Area wd
CIO Area ClO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A448 to A959

Timer Area

TOO00O0 to T4095

Counter Area

C0000 to C4095

using Index Registers

DM Area DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants

Data Registers DRO to DR15

Index Registers

Indirect addressing ,IRO to ,IR15

—2048 to +2047 IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
JRO+(++) t0 IR15+(++)

~(=-)IR0 to, (- -)IR15

Description

ASL(025) shifts the contents of Wd one bit to the left (from rightmost bit to left-

most bit). “0” is placed in the rightmost bit and the data from the leftmost bit is
shifted into the Carry Flag (CY).

ENEENNERNNRRENER

CY/ 15

0
0 v

NN

283

Data Shift I nstructions

Section 3-8

Flags

Precautions

Examples

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CcY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

When ASL(025) is executed, the Error Flag will turn OFF.
If as a result of the shift the contents of Wd is zero, the Equals Flag will turn

ON.

If as a result of the shift the contents of the leftmost bit of Wd is 1, the Nega-
tive Flag will turn ON.

When CIO 0.00 is ON, D100 will be shifted one bit to the left. “0” will be placed
in bit 00 of D100 and the contents of bit 15 of D100 will be shifted to the Carry

Flag (CY).

0.00

ASL

wd

D100

Wd: D100

o[o]o | [ofofo[1]

///////r

Wit

[olo][o]o[o[1]o]

3-8-6 DOUBLE SHIFT LEFT: ASLL(570)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

284

Shifts the contents of Wd and Wd +1 one bit to the left.

| ASLL(570)
wd Wd: Word
Variations Executed Each Cycle for ON Condition ASLL(570)
Executed Once for Upward Differentiation @ASLL(570)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas | Step program areas Subroutines | Interrupt tasks
OK OK OK OK
Area Wd
CIO Area CIO 0to CIO 6142
Work Area WO to W510
Holding Bit Area HO to H510

Data Shift I nstructions

Description

Flags

Precautions

Section 3-8
Area Wd
Auxiliary Bit Area A448 to A958
Timer Area TOO0O0O to T4094

Counter Area

C0000 to C4094

DM Area

DO to D32766

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

,IRO to ,IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(= IR0 to, -(- -)IR15

ASLL(570) shifts the contents of Wd and Wd +1 one bit to the left (from right-
most bit to leftmost bit). “0” is placed in the rightmost bit of Wd and the con-
tents of the leftmost bit of Wd and Wd +1 are shifted into the Carry Flag (CY).

Wd+1 wd
1514 0 1514 0
(LITTTIITITIIIIy (LTI ITTTTIT0T]
cv/isle 1/0 /15 1/0:°
LI [1] [[1]
Name Label Operation
Error Flag ER OFF
Equals Flag = ON when the shift result is 0.
OFF in all other cases.
Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.
Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

When ASLL(570) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd and Wd +1 are zero, the Equals
Flag will turn ON.

If as a result of the shift the contents of the leftmost bit of Wd +1 is 1, the Neg-
ative Flag will turn ON.

285

Data Shift I nstructions Section 3-8

Examples When CIO 0.01 is ON, word CIO 1000 and CIO 1001 will shift one bit to the
left. “0” is placed into CIO 1000.00 and the contents of CIO 1001.15 will be
shifted to the Carry Flag (CY).

0.01

ASLL
Wd 1000

Wd+1: CIO 1001 4 5 Wd: CIO 1000

Y i

3-8-7 ARITHMETIC SHIFT RIGHT: ASR(026)

Purpose Shifts the contents of Wd one bit to the right.
Ladder Symbol

— | ASR(026)
wd Wd: Word
Variations
Variations Executed Each Cycle for ON Condition ASR(026)
Executed Once for Upward Differentiation @ASR(026)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported
Applicable Program Areas
Block program areas | Step program areas Subroutines | Interrupt tasks
OK OK OK OK
Operand Specifications
Area Wd
CIO Area CIO0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A448 to A959
Timer Area TOO0OO to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants
Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15
using Index Registers | _»04g to +2047 ,IR0 to —2048 to +2047 ,|R15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
,—(=-)IRO to, —(- -)IR15

286

Data Shift I nstructions Section 3-8

Description ASR(026) shifts the contents of Wd one bit to the right (from leftmost bit to
rightmost bit). “0” will be placed in the leftmost bit and the contents of the
rightmost bit will be shifted into the Carry Flag (CY).

0.!15\'""""""'\'0'
(1] T

Flags
Name Label Operation
Error Flag ER OFF
Equals Flag = ON when the shift result is 0.
OFF in all other cases.
Carry Flag cY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.
Negative Flag N OFF
Precautions When ASR(026) is executed, the Error Flag and the Negative Flag will turn
OFF.
If as a result of the shift the contents of Wd is zero, the Equals Flag will turn
ON.
Examples When CIO 0.00 is ON, word CIO 1000 will shift one bit to the right. “0” will be

placed in CIO 1000.15 and the contents of CIO 1000.00 will be shifted to the
Carry Flag (CY).

0.00
F——asr

wd 1000

Wd: CIO 1000
o[o[1[ofofo[1]o]o]o]1]0]o]o

&\\\\\\\\\\\\\\\ .

[ol[ofo[1]o[o[o] 1]o]o[0]1]

3-8-8 DOUBLE SHIFT RIGHT: ASRL(571)

Purpose Shifts the contents of Wd and Wd +1 one bit to the right.
Ladder Symbol

— ASRL(571)

Wd Wd: Word

Variations

Variations Executed Each Cycle for ON Condition ASRL(571)

Executed Once for Upward Differentiation @ASRL(571)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas | Step program areas Subroutines | Interrupt tasks
OK OK OK OK

287

Data Shift I nstructions

Section 3-8

Operand Specifications

Area wd
CIO Area CIO 0to CIO 6142
Work Area WO to W510
Holding Bit Area HO to H510
Auxiliary Bit Area A448 to A958
Timer Area TOO0OO to T4094
Counter Area CO0000 to C4094
DM Area DO to D32766
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

,IRO to ,IR15

—2048 to +2047 ,IR0O to —2048 to +2047 ,IR15
DRO to DR15, IRO to IR15

JRO+(++) to ,IR15+(++)

—(=-)IRO0 to, —(— -)IR15

Description

ASRL(571) shifts the contents of Wd and Wd +1 one bit to the right (from left-

most bit to rightmost bit). “0” will be placed in the leftmost bit of Wd +1 and the
contents of the rightmost bit of Wd will be shifted into the Carry Flag (CY).

wWd+1

Wwd

15 10 15 10
HEEEEEENEENENENERREREREEEENNNNEEE

0.
1544

o\i4 \o\ey

Flags

Name

Label

Operation

Error Flag ER

OFF

Equals Flag =

ON when the shift result is O.
OFF in all other cases.

Carry Flag CcY

ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N

OFF

Precautions
OFF.

When ASRL (571) is executed, the Error Flag and the Negative Flag will turn

If as a result of the shift the contents of Wd and Wd +1 are zero, the Equals

Flag will turn ON.

288

Data Shift I nstructions

Section 3-8

Examples

When CIO 0.01 is ON, word CIO 2000 and CIO 2001 will shift one bit to the
right. “0” will be placed into CIO 2001.15 and the contents of CIO 2000.00 will
be shifted to the Carry Flag (CY).

0.01
———AsRL
wd 2000

15 Wd+1: CIO 2001

o 15 Wd: CIO 2000

[ofoiol [olol1] [olefi[o[ol

W

W,

EOC D

[ofe] fo[olo[=——————To[g] 1]

3-8-9 ROTATE LEFT: ROL(027)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Shifts all Wd bits one bit to the left including the Carry Flag (CY).

— | ROL(027)
wd Wwd: Word
Variations Executed Each Cycle for ON Condition ROL(027)
Executed Once for Upward Differentiation @ROL(027)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas

Step program areas Subroutines

Interrupt tasks

OK OK OK OK
Area Wd

CIO Area CIO 0to CIO 6143

Work Area WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area A448 to A959

Timer Area TOO0O0O to T4095

Counter Area C0000 to C4095

DM Area DO to D32767

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses
in BCD

*DO to *D32767

Constants
Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

using Index Registers

DRO to DR15, IR0 to IR15
JRO+(++) t0 IR15+(++)

—~(=-)IRO to, —(- -)IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15

289

Data Shift I nstructions Section 3-8

Description ROL(027) shifts all bits of Wd including the Carry Flag (CY) to the left (from
rightmost bit to leftmost bit).
cY 1514 10
Flags
Name Label Operation
Error Flag ER OFF
Equals Flag = ON when the shift result is 0.
OFF in all other cases.
Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.
Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.
Precautions When ROL(027) is executed, the Error Flag will turn OFF.
If as a result of the shift the contents of Wd is zero, the Equals Flag will turn
ON.
If as a result of the shift the contents of the leftmost bit of Wd is 1, the Nega-
tive Flag will turn ON.
Note It is possible to set the Carry Flag contents to 1 or 0 immediately before exe-
cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry
(CLC(041)) instructions.
Examples When CIO 0.00 is ON, word CIO 1000 and the Carry Flag (CY) will shift one

bit to the left. The contents of CIO 1000.15 will be shifted to the Carry Flag
(CY) and the Carry Flag contents will be shifted to CIO 1000.00.

0.00

ROL
wd 1000

cY 1514 Wd: CIO 1000 10

[@’w1|o|o|o|1|o\o|o\1|o|o5|“1|
Ji

@ Instruction executed once

oY 15 0
[o[o[1[0[o]o] 1]o[o[of 1[0] o] 0] 1]]

3-8-10 DOUBLE ROTATE LEFT: ROLL(572)

Purpose Shifts all Wd and Wd +1 bits one bit to the left including the Carry Flag (CY).
Ladder Symbol

— 1 ROLL(572)

Wd Wd: Word

290

Data Shift I nstructions Section 3-8
Variations
Variations Executed Each Cycle for ON Condition ROLL(572)
Executed Once for Upward Differentiation @ROLL(572)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Operand Specifications

Description

Flags

Precautions

Block program areas

Step program areas Subroutines | Interrupt tasks

OK OK OK OK
Area Wd

CIO Area CIO 0to CIO 6142

Work Area WO to W510

Holding Bit Area HO to H510

Auxiliary Bit Area A448 to A958

Timer Area TOO0OO to T4094

Counter Area C0000 to C4094

DM Area DO to D32766

Indirect DM addresses | @ DO to @ D32767

in binary

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

,IRO to ,IR15

—2048 to +2047 ,IR0O to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(=-)IR0 to, —(- -)IR15

ROLL(572) shifts all bits of Wd and Wd +1 including the Carry Flag (CY) to
the left (from rightmost bit to leftmost bit).

CY 1514 Wa+1 10 1514 Wd 10
[g“m [T1 TT1 [T]
J
Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

When ROLL(572) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd and Wd +1 are zero, the Equals

Flag will turn ON.

291

Data Shift I nstructions Section 3-8

If as a result of the shift the contents of the leftmost bit of Wd + 1 is 1, the Neg-
ative Flag will turn ON.

Note It is possible to set the Carry Flag contents to 1 or 0 immediately before exe-
cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry

(CLC(041)) instructions.

Examples When CIO 0.01 is ON, word CIO 2000, CIO 2001 and the Carry Flag (CY) will
shift one bit to the left. The contents of CIO 2001.15 will be shifted to the

Carry Flag (CY) and the Carry Flag contents will be shifted to CIO 2000.00.

0.01
——roLL

wd 2000

CY 15 Wd+1: CIO 2001 0 15 Wd: CIO 2000 0
[@ﬂmom ----------------- G CE C——" o

@ Instruction executed once

0 15 0
D CC 0 oo 1] [Ofo[i[s CHC

3-8-11 ROTATE RIGHT: ROR(028)

Purpose Shifts all Wd bits one bit to the right including the Carry Flag (CY).

Ladder Symbol

— | ROR(028)
wd wd: Word
Variations
Variations Executed Each Cycle for ON Condition ROR(028)
Executed Once for Upward Differentiation @ROR(028)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Operand Specifications

292

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Area wd
CIO Area CIO0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A448 to A959

Timer Area TOO00O to T4095
Counter Area C0000 to C4095
DM Area DO to D32767

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants

Data Shift I nstructions

Description

Flags

Precautions

Note

Examples

Section 3-8
Area Wd
Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

using Index Registers | _o048 to +2047 ,IR0 to —2048 to +2047 ,IR15

DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
—(=9)IR0 to, —(- -)IR15

ROR(028) shifts all bits of Wd including the Carry Flag (CY) to the right (from
leftmost bit to rightmost bit).

151 10 ¢y
wa 1] ITTEJ
Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

When ROR(028) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd is zero, the Equals Flag will turn
ON.

If as a result of the shift the contents of the leftmost bit of Wd is 1, the Nega-
tive Flag will turn ON.

It is possible to set the Carry Flag contents to 1 or 0 immediately before exe-

cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry
(CLC(041)) instructions.

When CIO 0.00 is ON, word CIO 1000 and the Carry Flag (CY) will shift one
bit to the right. The contents of CIO 1000.00 will be shifted to the Carry Flag
(CY) and the Carry Flag contents will be shifted to CIO 1000.15.

0.00
——-{ror

wd 1000

1514 Wd: CIO 1000 10 ¢y

rz|o|o|1|o|o\1|o|o\1|oio|1|o|o|1|”@ﬂ

Instruction executed once
15 0 _CY

o[+ olol+[o[o[x[o[o[:[o[o[[o[o] [1]

293

Data Shift I nstructions

Section 3-8

3-8-12 DOUBLE ROTATE RIGHT: RORL(573)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description

Flags

294

Shifts all Wd and Wd +1 bits one bit to the right including the Carry Flag (CY).

— | RORL(573)
wd wd: Word
Variations Executed Each Cycle for ON Condition RORL(573)
Executed Once for Upward Differentiation @RORL(573)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas

Step program areas Subroutines

Interrupt tasks

OK OK OK OK
Area wd

ClO Area CIO 0to CIO 6142

Work Area WO to W510

Holding Bit Area HO to H510

Auxiliary Bit Area A448 to A958

Timer Area TOO0O0O to T4094

Counter Area CO0000 to C4094

DM Area DO to D32766

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

,IRO to ,IR15

DRO to DR15, IR0 to IR15
JRO++) t0 ,IR15+(++)

~(=-)IR0 to, (- -)IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15

RORL(573) shifts all bits of Wd and Wd +1 including the Carry Flag (CY) to
the right (from leftmost bit to rightmost bit).

1514 Wd+1 0 1514 wd 0 oY
[T [] (11 TT?
(
Name Label Operation
Error Flag ER OFF
Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Data Shift I nstructions

Section 3-8

Precautions

Note

Examples

Name Label Operation
Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.
Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

When RORL(573) is executed, the Error Flag will turn OFF.
If as a result of the shift the contents of Wd and Wd +1 are zero, the Equals
Flag will turn ON.

If as a result of the shift the contents of the leftmost bit of Wd + 1 is 1, the Neg-
ative Flag will turn ON.

It is possible to set the Carry Flag contents to 1 or O immediately before exe-
cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry
(CLC(041)) instructions.

When CIO 0.01 is ON, word CIO 2000, CIO 2001 and the Carry Flag (CY) will
shift one bit to the right. The contents of CIO 2000.00 will be shifted to the
Carry Flag (CY) and the Carry Flag contents will be shifted to CIO 2001.15.

0.01

——roRL

Wd

2000

15 wd+1:Cl102001 O 15 wd: CIO 2000 0 oY
o [T010] (ool |o@|’§>]
L

@ Instruction executed once
15 0 15 0 CY
[o[1[ofQ] --------ereeeeee [1[0] [of1]ofo] ----------nn------- o]o]

3-8-13 ROTATE LEFT WITHOUT CARRY: RLNC(574)
Shifts all Wd bits one bit to the left not including the Carry Flag (CY).

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

| RLNC(574)
wd wd: Word
Variations Executed Each Cycle for ON Condition RLNC(574)
Executed Once for Upward Differentiation @RLNC(574)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas

Step program areas Subroutines

Interrupt tasks

OK OK OK OK
Area Wd

ClO Area ClO 0to CIO 6143

Work Area WO to W511

Holding Bit Area HO to H511

295

Data Shift I nstructions

Section 3-8

Description

Flags

Precautions

296

Area wd
Auxiliary Bit Area A448 to A959
Timer Area TOO00O0 to T4095
C0000 to C4095

Counter Area

DM Area DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants

Data Registers DRO to DR15

Index Registers

Indirect addressing ,IRO to ,IR15

using Index Registers | _2048 to +2047 ,IR0 to —2048 to +2047 ,IR15

DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
—(= IR0 to, -(- -)IR15

RLNC(574) shifts all bits of Wd to the left (from rightmost bit to leftmost bit).
The contents of the leftmost bit of Wd shifts to the rightmost bit and to the
Carry Flag (CY).

it
J
Name Label Operation
Error Flag ER OFF
Equals Flag = ON when the shift result is 0.
OFF in all other cases.
Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.
Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

When RLNC(574) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd is zero, the Equals Flag will turn
ON.

If as a result of the shift the contents of the leftmost bit of Wd is 1, the Nega-
tive Flag will turn ON.

Data Shift I nstructions

Section 3-8

Examples

When CIO 0.00 is ON, word CIO 1000 will shift one bit to the left (excluding
the Carry Flag (CY)). The contents of CIO 1000.15 will be shifted to

CIO 1000.00.
0.00
F——rRNG
wd 1000
15 14

wd: CIO 1000 10

[[oTo +To[e] o[o][o[o[]e[o[o]
L J]

cy @ Instruction executed once

15 0
[o[o[1]o[o[1]o[o] 1]o]o] 1]o]0] o] 1]

3-8-14 DOUBLE ROTATE LEFT WITHOUT CARRY: RLNL(576)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Shifts all Wd and Wd +1 bits one bit to the left not including the Carry Flag

(CY).
| RLNL(576)
wd Wd: Word
Variations Executed Each Cycle for ON Condition RLNL(576)
Executed Once for Upward Differentiation @RLNL(576)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas

Step program areas Subroutines

Interrupt tasks

OK OK OK OK
Area Wd

CIO Area CIO 0to CIO 6142

Work Area WO to W510

Holding Bit Area HO to H510

Auxiliary Bit Area A448 to A958

Timer Area TOO0OO to T4094

Counter Area C0000 to C4094

DM Area DO to D32766

Indirect DM addresses | @ DO to @ D32767

in binary

Indirect DM addresses
in BCD

*DO to *D32767

Constants

Data Registers

297

Data Shift I nstructions

Section 3-8

Description

Flags

Precautions

Examples

298

Area wd
Index Registers
IR0 to ,IR15
—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
—(=-)IRO to, (= -)IR15

Indirect addressing
using Index Registers

RLNL(576) shifts all bits of Wd and Wd +1 to the left (from rightmost bit to left-
most bit). The contents of the leftmost bit of Wd +1 is shifted to the rightmost
bit of Wd, and to the Carry Flag (CY).

Name Label Operation
Error Flag ER OFF
Equals Flag = ON when the shift result is 0.
OFF in all other cases.
Carry Flag CcY ON when 1 is shifted into the Carry Flag (CY).

OFF in all other cases.
ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

Negative Flag N

When RLNL(576) is executed, the Error Flag will turn OFF.
If as a result of the shift the contents of Wd and Wd +1 are zero, the Equals
Flag will turn ON.

If as a result of the shift the contents of the leftmost bit of Wd + 1 is 1, the Neg-
ative Flag will turn ON.

When CIO 0.01 is ON, word CIO 1100 and CIO 1101 will shift one bit to the
left (excluding the Carry Flag (CY)). The contents of CIO 1101.15 will be
shifted to CIO 1100.00.

0.01
F——RuNL

wd 1100

% wd+t:cio1101 % ¥ wd:cio1100 O
|1|0|0‘1| |1|0|0| |1|0|0|1| ‘0|0|1‘
L S

anstruction executed once

&Y 45 0 15 0
A C " BRI O E——" BREE

Data Shift I nstructions

Section 3-8

3-8-15 ROTATE RIGHT WITHOUT CARRY: RRNC(575)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description

Shifts all Wd bits one bit to the right not including the Carry Flag (CY). The
contents of the rightmost bit of Wd shifts to the leftmost bit and to the Carry

Flag (CY).
| RRNC(575)
wd Wd: Word
Variations Executed Each Cycle for ON Condition RRNC(575)
Executed Once for Upward Differentiation @RRNC(575)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas

Step program areas Subroutines

Interrupt tasks

OK OK OK OK
Area wd

CIO Area CIO 0to CIO 6143

Work Area WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area A448 to A959

Timer Area

TOO00O0 to T4095

Counter Area

C0000 to C4095

DM Area

DO to D32767

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants

using Index Registers

Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

DRO to DR15, IR0 to IR15
JRO+(++) t0 IR15+(++)

~(=-)IR0 to, (- -)IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15

RRNC(575) shifts all bits of Wd to the right (from leftmost bit to rightmost bit)
not including the Carry Flag (CY).

15 14
Ve \

10 C¥Y

wdl |]

110

J

299

Data Shift I nstructions Section 3-8
Flags
Name Label Operation
Error Flag ER OFF
Equals Flag = ON when the shift result is 0.
OFF in all other cases.
Carry Flag CcY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.
Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

Precautions

Examples

When RRNC(575) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd is zero, the Equals Flag will turn
ON.

If as a result of the shift the contents of the leftmost bit of Wd is 1, the Nega-
tive Flag will turn ON.

When CIO 0.00 is ON, word CIO 1000 will shift one bit to the right (excluding
the Carry Flag (CY)). The contents of CIO 1000.00 will be shifted to
CIO 1000.15.

0.00
F——-/rmne
wd 1000

1514 Wd: CIO 1000 10

PN Pt
|1t!0|0|1\0|0|1\0|0|1|0|0|1I0|0|j>|

Q Instruction executed once
15 0

CcY
[o[1]o[o[1]o[o]1]o]o] 1[o] o] 1] o[o] [o]

3-8-16 DOUBLE ROTATE RIGHT WITHOUT CARRY: RRNL(577)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

300

Shifts all Wd and Wd +1 bits one bit to the right not including the Carry Flag
(CY). The contents of the rightmost bit of Wd +1 is shifted to the leftmost bit of
W(d, and to the Carry Flag (CY).

— 1 RRNL(577)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition RRNL(577)
Executed Once for Upward Differentiation @RRNL(577)
Executed Once for Downward Differentiation | Not supported

Immediate Refreshing Specification Not supported

Block program areas | Step program areas Subroutines | Interrupt tasks

OK OK OK OK

Data Shift I nstructions

Section 3-8

Operand Specifications

Description

Flags

Precautions

Note

Area wd
CIO Area CIO 0to CIO 6142
Work Area WO to W510
Holding Bit Area HO to H510
Auxiliary Bit Area A448 to A958
Timer Area TOO0O to T4094
Counter Area C0000 to C4094
DM Area DO to D32766

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses
in BCD

*DO to *D32767

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

,IRO to ,IR15

—2048 to +2047 ,IR0O to —2048 to +2047 ,IR15
DRO to DR15, IRO to IR15

JRO+(++) to ,IR15+(++)

—(=-)IRO0 to, —(— -)IR15

RRNL(577) shifts all bits of Wd and Wd +1 to the right (from leftmost bit to
rightmost bit) not including the Carry Flag (CY).

1514 Wd+1 15 wd o o

[TT1 [T1 1 0

(J

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

When RRNL(577) is executed, the Error Flag will turn OFF,

If as a result of the shift the contents of Wd and Wd +1 are zero, the Equals
Flag will turn ON.

If as a result of the shift the contents of the leftmost bit of Wd + 1 is 1, the Neg-
ative Flag will turn ON.

It is possible to set the Carry Flag contents to 1 or O immediately before exe-
cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry
(CLC(041)) instructions.

301

Data Shift I nstructions Section 3-8

Examples When CIO 0.01 is ON, words CIO 2000 and CIO 2001 will shift one bit to the
right, (excluding the Carry Flag (CY)). The contents of CIO 2001.00 will be

shifted to CIO 2000.15.

0.01

RRNL
2000

Wd

® wd+1:clo2001 0 ¥ wd:clo2000 9

[1[o[o] ------rre-ee-e-e- [A[o]o] [A[O[0] ---r--n-eee---e- [o]o]o]

t J
@ Instruction executed once

15 0 15 o &

[o[1]ofo] ------mnoeeoeee--- [1]0] [o[1]ofo] ---------nnnr-eeee- [o[o] [a]

3-8-17 ONE DIGIT SHIFT LEFT: SLD(074)

Purpose Shifts data by one digit (4 bits) to the left.
Ladder Symbol
— | SLD(074)
St St: Starting word
E E: End word
Variations
Variations Executed Each Cycle for ON Condition SLD(074)
Executed Once for Upward Differentiation @SLD(074)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Note

Operand Specifications

302

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

St and E must be in the same data area.

Area St E
CIO Area CIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A448 to A959
Timer Area TOO0O to T4095
Counter Area C0000 to C4095
DM Area DO to D32767

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants

Data Registers

Data Shift I nstructions

Section 3-8

Description

Flags

Precautions

Note

Examples

0.00

Area St E
Index Registers
,IRO to ,IR15
—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
,—(-=-)IRO to, —(- -)IR15

Indirect addressing
using Index Registers

SLD(074) shifts data between St and E by one digit (4 bits) to the left. “0” is
placed in the rightmost digit (bits 3 to 0 of St), and the content of the leftmost
digit (bits 15 to 12 of E) is lost.

E S t
Y Y W Y W [
Lost NN R e [
Name Label Operation
Error Flag ER ON when St is greater than E.
OFF in all other cases.

When St is greater than E, an error will be generated and the Error Flag will
turn ON.

When large amounts of data are shifted, the instruction execution time is quite
long. Be sure that the power is not cut while SLD(074) is being executed,
causing the shift operation to stop halfway through.

When CIO 0.00 is ON, words CIO 1000 through CIO 1002 will shift by one
digit (4 bits) to the left. A zero will be placed in bits 0 to 3 of word CIO 1000
and the contents of bits 12 to 15 of CIO 1002 will be lost.

——sLD

St

1000!

1002

E: CIO 1002 St+1: CIO 1001 St: C1O 1000

POV VTN
15121187 43 0 15121187 43 0

Lost | 18 1%11 8:7 4:5 2

3-8-18 ONE DIGIT SHIFT RIGHT: SRD(075)

Purpose

Ladder Symbol

Variations

Shifts data by one digit (4 bits) to the right.

— | SRD(075)
St St: Starting word
E E: End word
Variations Executed Each Cycle for ON Condition SRD(075)
Executed Once for Upward Differentiation @SRD(075)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

303

Data Shift I nstructions

Section 3-8

Applicable Program Areas

Note

Operand Specifications

Description

Flags

Precautions

Note

304

Block program areas

Step program areas Subroutines

Interrupt tasks

OK

OK OK

OK

St and E must be in the same data area.

Area St E
ClO Area ClIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A448 to A959
Timer Area TOO0OO to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary

Indirect DM addresses
in BCD

*DO to *D32767

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

,IRO to ,IR15

DRO to DR15, IR0 to IR15
JRO+(++) t0 IR15+(++)
~(=-)IRO to, (- -)IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15

SRD(075) shifts data between St and E by one digit (4 bits) to the right. “0” is
placed in the leftmost digit (bits 15 to 12 of E), and the content of the rightmost
digit (bits 3 to 0 of St) is lost.

Name Label
Error Flag ER

Operation
ON when St is greater than E.
OFF in all other cases.

When St is greater than E, an error will be generated and the Error Flag will
turn ON.

When SRD(075) is executed, the Equals Flag and Negative Flag will turn
OFF.

When large amounts of data are shifted, the instruction execution time is quite
long. Always take care that the power is not cut while SRD(075) is being exe-
cuted, causing the shift operation to stop halfway through.

Data Shift I nstructions

Section 3-8

Examples

When CIO 0.00 is ON, words CIO 1000 through CIO 1002 will shift by one
digit (4 bits) to the right. A zero will be placed in bits 12 to 15 of CIO 1002 and
the contents of bits 0 to 3 of word CIO 1000 will be lost.

3-8-19 SHIFT N-BIT DATA LEFT: NSFL(578)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

Note

Operand Specifications

0.00
F——srDp
St 1000
E 1002 E:ClO 1002 St+1:CIO 1001 St: CIO 1000
951291 87 43 0 15921187 43 0 15129187 43 0
R N A R T ¢ T] Lost
Shifts the specified number of bits to the left.
— | NSFL(578)
D D: Beginning word for shift
C C: Beginning bit
N N: Shift data length
Variations Executed Each Cycle for ON Condition NSFL(578)
Executed Once for Upward Differentiation @NSFL(578)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas

Step program areas Subroutines

Interrupt tasks

OK

OK OK

OK

C: 0000 to O00F hex (0 to 15)
N: 0000 to FFFF hex (0 to 65535)

All words in the shift register must be in the same area.

Area D | c N

ClO Area ClO 0to CIO 6143

Work Area WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area A448 to A959 AO to A959

Timer Area TOO00O0 to T4095

Counter Area CO0000 to C4095

DM Area DO to D32767

Indirect DM addresses | @ DO to @ D32767

in binary

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants #0000 to #000F #0000 to #FFFF
(binary) or &0 to | (binary) or &0 to
&15 &65535

Data Registers DRO to DR15

305

Data Shift I nstructions Section 3-8
Area D C | N
Index Registers
Indirect addressing ,IRO to ,IR15

Description

Flags

Precautions

Examples

306

using Index Registers | _o048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—~(= IR0 to, (- -)IR15

NSFL(578) shifts the specified number of bits by the shift data length (N) from
the beginning bit (C) in the rightmost word, as designated by D one bit to the
left (towards the leftmost word and the leftmost bit). “0” is place into the begin-
ning bit and the contents of the leftmost bit in the shift area are shifted to the
Carry Flag (CY).

[cE

N-1 bit
Name Label Operation
Error Flag ER ON when C data is not between 0000 and 000F hex.
OFF in all other cases.
Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

When the shift data length (N) is 0, the contents of the beginning bit will be
copied to the Carry Flag (CY), and its contents will not be changed.

Only the bits shifted into rightmost word in the shift area (i.e. leftmost word
data) will be changed.

When CIO 0.00 is ON, all bits from the beginning bit 3 to the shift data length
(B hex) will be shifted one bit to the left (from the rightmost bit to the leftmost
bit). “0” will be placed into bit 3 of CIO 100. The contents of the leftmost bit in
the shift area (bit 13 of CIO 100) are copied into the Carry Flag (CY).

O.?O—NSFL
N: lj bits l— C: Starting from bit 3
D: CIO 100 !15|M|1§|112\1c1)|o|o|o|1|1|o|o|1] [T]
i
of (Cffolslololsfsfalilo T T

0

Data Shift I nstructions Section 3-8
3-8-20 SHIFT N-BIT DATA RIGHT: NSFR(579)
Purpose Shifts the specified number of bits to the right.
Ladder Symbol
| NSFR(579)
D D: Beginning word for shift
C C: Beginning bit
N N: Shift data length
Variations
Variations Executed Each Cycle for ON Condition NSFR(579)
Executed Once for Upward Differentiation @NSFR(579)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas | Step program areas Subroutines | Interrupt tasks

OK OK OK OK
Operands C: 0000 to 000F hex (0 to 15)

N: 0000 to FFFF hex (0 to 65535)

Note All words in the shift register must be in the same area.
Operand Specifications
Area D | C N

CIO Area CIO0to CIO 6143

Work Area WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area A448 to A959 A0 to A959

Timer Area TOO0OO to T4095

Counter Area C0000 to C4095

DM Area DO to D32767

Indirect DM addresses | @ DO to @ D32767

in binary

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants --- #0000 to #000F #0000 to #FFFF

(binary) or &0 to
&15

(binary) or &0 to
&65535

Data Registers

DRO to DR15

Index Registers

Indirect addressing
using Index Registers

,IRO to ,IR15

—2048 to +2047 IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) t0 IR15+(++)

—~(= IR0 to, —(- -)IR15

307

Data Shift I nstructions

Section 3-8

Description

Flags

Precautions

Examples

308

NSFR(579) shifts the specified number of bits by the shift data length (N) from
the beginning bit (C) in the rightmost word as designated by D one bit to the
right (towards the rightmost word and the rightmost bit). “0” will be placed into
the beginning bit and the contents of the rightmost bit in the shift area will be
shifted to the Carry Flag (CY).

[CE

o] |]

x Shifts one bit to the right

cY
D |
Name Label Operation
Error Flag ER ON when C data is not between 0000 and 000F hex.
OFF in all other cases.
Carry Flag cY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

When the shift data length (N) is 0, the contents of the beginning bit will be
copied to the Carry Flag (CY), and its contents will not be changed.

Only the bits shifted into rightmost word in the shift area (i.e. leftmost word
data) will be changed.

When CIO 0.00 is ON, all bits from the beginning bit 2 to end of the shift data
length 11 bits (B hex), will be shifted one bit to the right , (from the leftmost bit
to the rightmost bit). “0” is shifted into bit 12 of CIO 1000. The contents of the
rightmost bit in the shift area (bit 2 of CIO 1000) are copied into the Carry Flag
(CY).

0.00
F——nsFr
D 1000
c &2
N &11
. C: Starting from bit 2
N: 11 bits l_
A

N\

15 14 1392 11
D:€101000 [| | Jo[o]1]o]o]o[o]o]1]o]o] | |

CY

Data Shift I nstructions

Section 3-8

3-8-21 SHIFT N-BITS LEFT: NASL(580)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

Operand Specifications

Shifts the specified 16 bits of word data to the left by the specified number of

bits.
— | NASL(580)
D D: Shift word
C C: Control word
Variations Executed Each Cycle for ON Condition NASL(580)
Executed Once for Upward Differentiation @NASL(580)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas

Step program areas Subroutines

Interrupt tasks

OK OK OK OK
C: Control Word
15 12 11 8 7 0
C T o |
L No. of bits to shift: 00 to 10 Hex
Always 0.

Data shifted into register
0 Hex: O shifted in
8 Hex: Contents of rightmost bit shifted in

Area D C
CIO Area CIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A448 to A959 A0 to A959

Timer Area TOO00O to T4095
Counter Area C0000 to C4095
DM Area DO to D32767

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants Specified values only
Data Registers DRO to DR15

309

Data Shift I nstructions Section 3-8
Area D C
Index Registers
Indirect addressing ,IRO to ,IR15

Description

Flags

Precautions

Examples

310

using Index Registers | _o048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—~(= IR0 to, (- -)IR15

NASL(580) shifts D (the shift word) by the specified number of binary bits
(specified in C) to the left (from the rightmost bit to the leftmost bit). Either
zeros or the value of the rightmost bit will be placed into the specified number
of bits of the shift word starting from the rightmost bit.

% 1211 87 43 0
o] i 0 i i |
%(—J
Shift n-bits

—Contents of "a" or "0" shifted in

[1]]

Name Label Operation

Error Flag ER ON when the control word C (the number of bits to shift) is
not within range.

OFF in all other cases.

Equals Flag = ON when the shift result is 0.
OFF in all other cases.
Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.
Negative Flag N ON when the leftmost bit is 1 as a result of the shift.

OFF in all other cases.

For any bits which are shifted outside the specified word, the contents of the
last bit is shifted to the Carry Flag (CY), and all other data is lost.

When the number of bits to shift (specified in C) is “0,” the data will not be
shifted. The appropriate flags will turn ON and OFF, however, according to
data in the specified word.

When the contents of the control word C is out of range, an error will be gen-
erated and the Error Flag will turn ON.

If as a result of the shift the contents of D is 0000 hex, the Equals Flag will
turn ON.

If as a result of the shift the contents of the leftmost bit of D is 1, the Negative
Flag will turn ON.

When CIO 0.00 is ON, The contents of CIO 1000 is shifted 10 bits to the left
(from the rightmost bit to the leftmost bit). The number of bits to shift is speci-
fied in bits 0 to 7 of word CIO 2000 (control data). The contents of bit O of
CIO 1000 is copied into bits from which data was shifted and the contents of
the rightmost bit which was shifted out of range is shifted into the Carry Flag
(CY). All other data is lost.

Data Shift I nstructions Section 3-8

0.00
F——nasL
D 1000
o] 2000
15 12 11 8 7 4 3 0
c:clo2000| 8 i 0 0o i A |
L No. of bits to shift: 10 bits (0A Hex)
Always 0.
Data shifted into register
8 Hex: Contents of rightmost bit shifted in
Lost iah bi
15 s 7|8 5 0 Rightmost bit
ciowoo| [[T[]]]] [1]e]e]1]e]o]1

/
1312 11 10

oy 43210
[1]cio 2000[o] o[1o o] 1]][4 4[4[1] 1] 1] 1] 1

No. of bits to shift: 10 bits
(Contents of the rightmost
bit is inserted.)

3-8-22 DOUBLE SHIFT N-BITS LEFT: NSLL(582)

Purpose Shifts the specified 32 bits of word data to the left by the specified number of
bits.
Ladder Symbol
— | NSLL(582)
D D: Shift word
C C: Control word
Variations
Variations Executed Each Cycle for ON Condition NSLL(582)

Executed Once for Upward Differentiation @NSLL(582)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas | Step program areas Subroutines | Interrupt tasks
OK OK OK OK

311

Data Shift I nstructions Section 3-8

Operands C: Control Word

15 12 11 8 7 0

L No. of bits to shift: 00 to 20 Hex

Always 0.

Data shifted into register
0 Hex: 0 shifted in
8 Hex: Contents of rightmost bit shifted in

Operand Specifications

Area D C
CIO Area CIO 0to CIO 6142 ClO 0to CIO 6143
Work Area WO to W510 WO to W511
Holding Bit Area HO to H510 HO to H511
Auxiliary Bit Area A448 to A958 AO to A959
Timer Area TOO00O0 to T4094 TOO00O0 to T4095
Counter Area C0000 to C4094 C0000 to C4095
DM Area DO to D32766 DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants -—- Specified values only
Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15
using Index Registers | _»04g to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
—(—-)IR0 to, —(— -)IR15

Description NSLL(582) shifts D and D+1 (the shift words) by the specified number of
binary bits (specified in C) to the left (from the rightmost bit to the leftmost bit).
Either zeros or the value of the rightmost bit will be placed into the specified
number of bits of the shift word starting from the rightmost bit.

15 1211 87 48 O
Cl T 0 1 I |

[——
Shift n-bits

Contents of "a" or "0" shifted in

312

Data Shift I nstructions

Section 3-8

Flags

Precautions

Name Label Operation

Error Flag ER ON when the control word C (the number of bits to shift) is
not within range.
OFF in all other cases.

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CcY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.

OFF in all other cases.

For any bits which are shifted outside the specified word, the contents of the
last bit is shifted to the Carry Flag (CY), and all other data is lost.
When the number of bits to shift (specified in C) is “0,” the data will not be
shifted. The appropriate flags will turn ON and OFF, however, according to
data in the specified word.
When the contents of the control word C are out of range, an error will be gen-
erated and the Error Flag will turn ON.

If as a result of the shift the contents of D is 0000, the Equals Flag will turn

ON.

If as a result of the shift the contents of the leftmost bit of D, D+1 is 1, the Neg-
ative Flag will turn ON.

313

Data Shift I nstructions Section 3-8

Examples When CIO 0.00 is ON, CIO 1000 and CIO 1001 will be shifted to the left (from
the rightmost bit to the leftmost bit) by 10 bits. The number of bits to shift is
specified in bits 0 to 7 of word D300 (control data). The contents of bit O of
CIO 1000 is copied into bits from which data was shifted and the contents of

the rightmost bit which was shifted out of range is shifted into the Carry Flag
(CY). All other data is lost.

0.00
F——ns

D 10001

c D300
15 12 11 8 7 4 3 0
C: D300 | 8 ‘ 0 ‘ 0 A |

L No. of bits to shift: 10 bits (OA Hex)
Always 0.

Data shifted into register
8 Hex: Contents of right-
most bit shifted in

Lost

clo 15 8 7 clo 15 876 5
1001||||‘|||1 1000

& // ‘%/

7 0
1001 o0 1‘1|‘|‘|1|1|1‘1|‘|1

Rightmost bit a

1000

No. of bits to shift: 10 bits
(Contents of the rightmost
bit is shifted in)

3-8-23 SHIFT N-BITS RIGHT: NASR(581)

Purpose Shifts the specified 16 bits of word data to the right by the specified number of
bits.
Ladder Symbol
— 1 NASR(581)
D D: Shift word
C C: Control word
Variations
Variations Executed Each Cycle for ON Condition NASR(581)

Executed Once for Upward Differentiation @NASR(581)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

314

Data Shift I nstructions

Section 3-8

Applicable Program Areas

Block program areas

Step program areas Subroutines | Interrupt tasks

OK

OK OK OK

Operands C: Control Word

15 12 11 8 7

C

LNo. of bits to shift: 00 to 10 Hex

Always 0.

Data shifted into register
0 Hex: 0 shifted in
8 Hex: Contents of rightmost bit shifted in

Operand Specifications

Area

D Cc

CIO Area

ClO 0to CIO 6143

Work Area

WO to W511

Holding Bit Area

HO to H511

Auxiliary Bit Area

A448 to A959 A0 to A447

A448 to A959

Timer Area

TOO00O to T4095

Counter Area

C0000 to C4095

using Index Registers

DM Area DO to D32767

Indirect DM addresses | @ DO to @ D32767

in binary

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants Specified values only
Data Registers DRO to DR15

Index Registers

Indirect addressing ,IRO to ,IR15

—2048 to +2047 IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) t0 IR15+(++)

~(=-)IR0 to, (- -)IR15

Description

NASR(581) shifts D (the shift word) by the specified number of binary bits

(specified in C) to the right (from the rightmost bit to the leftmost bit). Either
zeros or the value of the rightmost bit will be placed into the specified number
of bits of the shift word starting from the rightmost bit.

Contents of "a" or
"0" shifted in

315

Data Shift I nstructions

Section 3-8

Flags

Precautions

Examples

316

Name Label Operation

Error Flag ER ON when the control word C (the number of bits to shift) is
not within range.

OFF in all other cases.

Equals Flag = ON when the shift result is 0.
OFF in all other cases.
Carry Flag CcY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.
Negative Flag N ON when the leftmost bit is 1 as a result of the shift.

OFF in all other cases.

For any bits which are shifted outside the specified word, the contents of the
last bit is shifted to the Carry Flag (CY), and all other data is discarded.

When the number of bits to shift (specified in C) is “0,” the data will not be
shifted. The appropriate flags will turn ON and OFF, however, according to
data in the specified word.

When the contents of the control word C are out of range, an error will be gen-
erated and the Error Flag will turn ON.

If as a result of the shift the contents of D is 0000 hex, the Equals Flag will
turn ON.

If as a result of the shift the contents of the leftmost bit of D is 1, the Negative
Flag will turn ON.

When CIO 0.00 is ON, CIO 1000 will be shifted 10 bits to the right (from the
leftmost bit to the rightmost bit). The number of bits to shift is specified in bits
0 to 7 of word D300. The contents of bit 15 of CIO 1000 is copied into the bits
from which data was shifted and the contents of the leftmost bit of data which
was shifted out of range, is shifted into the Carry Flag (CY). All other data is
lost.

0.00
F——Anasr
D 1000
(o} D300
15 12 11 8 7 4 3 0
c:D300| 8 i 0 0 A
L No. of bits to shift: 10 bits (OA Hex)
Always 0.

Data shifted into register
8 Hex: Contents of leftmost bit shifted in

Data Shift I nstructions

Section 3-8

Leftmost bit

Lost
8 7 0

1 9
cio 1000 1] 0|0 1] o] o] 1

HEERREN

T

151415121110 9 8

433
cio 1001 {1]1]1]1[1][1]1]1]1[1]1]o]0]1]0]0]

No. of bits to shift: 10 bits
(Contents of the leftmost bit is inserted.)

3-8-24 DOUBLE SHIFT N-BITS RIGHT: NSRL(583)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

Operand Specifications

I%

Shifts the specified 32 bits of word data to the right by the specified number of

bits.
| NSRL(583)
D D: Shift word
C C: Control word
Variations Executed Each Cycle for ON Condition NSRL(583)
Executed Once for Upward Differentiation @NSRL(583)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK OK

C: Control Word

0

15 12 11 8 7

C 0 ‘

LNo. of bits to shift: 00 to 20 Hex

Always 0.

Data shifted into register
0 Hex: O shifted in
8 Hex: Contents of rightmost bit shifted in

Area D C
CIO Area CIO 0to CIO 6142 CIO 0to CIO 6143
Work Area WO to W510 WO to W511
Holding Bit Area HO to H510 HO to H511
Auxiliary Bit Area A448 to A958 AO to A959
Timer Area TOO000 to T4094 TOO000 to T4095
Counter Area C0000 to C4094 C0000 to C4095
DM Area DO to D32766 DO to D32767

317

Data Shift I nstructions

Section 3-8

Description

Flags

Precautions

318

Area D C
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants Specified values only
Data Registers DRO to DR15

Index Registers

Indirect addressing ,IRO to ,IR15

using Index Registers | 2048 to +2047 ,IR0 to -2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

~(= IR0 to, —(- -)IR15

NSRL(583) shifts D and D+1 (the shift words) by the specified number of
binary bits (specified in C) to the right (from the leftmost bit to the rightmost
bit). Either zeros or the value of the rightmost bit will be placed into the speci-
fied number of bits of the shift word starting from the rightmost bit.

15 1211 87 43 0
Cl R j |

_V_J
Shift n-bits
a” D+1 D

=i N S o |
i EE “E] Lost
Name Label Operation

Error Flag ER ON when the control word C (the number of bits to shift)
is not within range.
OFF in all other cases.

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CcY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

For any bits which are shifted outside the specified word, the contents of the
last bit is shifted to the Carry Flag (CY), and all other data is lost.

When the number of bits to shift (specified in C) is “0,” the data will not be
shifted. The appropriate flags will turn ON or OFF, however, according to data
in the specified word.

When the contents of the control word C are out of range, an error will be gen-
erated and the Error Flag will turn ON.

If as a result of the shift the contents of D +1 is 00000000 hex, the Equals Flag
will turn ON.

If as a result of the shift the contents of the leftmost bit of D +1 is 1, the Nega-
tive Flag will turn ON.

Data Shift I nstructions Section 3-8

Examples When CIO 0.00 is ON, CIO 1000 and CIO 1001 will be shifted 10 bits to the
right (from the leftmost bit to the rightmost bit). The number of bits to shift is
specified in bits 0 to 7 of word D300 (control data). The contents of bit 15 of
CIO 1001 will be copied into the bits from which data was shifted and the con-
tents of the leftmost bit of data which was shifted out of range will be shifted
into the Carry Flag (CY). All other data is lost.

0.00
F——1nsRL

D 1000
C D300

15 12 11 8 7 4 3 0

c:p300| 8 i 0 o A
L No. of bits to shift: 10 bits (OA hex)
Always 0.

Data shifted into register
8 Hex: Contents of leftmost bit shifted in

Lost

|

Leftmost bit
15/ 8 7

15 als 7 0
cio 1001 | 1]o[o[1]o[o]o[1]0]o]o[1]0]o]o] 1] cro1000|0]a]a[1]oels] [[[[[[[[]

\\\

15 8
c10 1001 [+ [+ [1[1[[1[1[1[1]1[1]e] o] 1 o[o] cio 2000 o]] o] o o[1 o[o] o] 1o o[o[]0] o] " [1]

No. of bits to shift: 10 bits
(Contents of the leftmost bit is inserted.)

319

I ncrement/Decrement I nstructions Section 3-9
3-9 Increment/Decrement Instructions
This section describes instructions used to increment data.
Instruction Mnemonic Function | Page
code
INCREMENT BINARY ++ 590 320
DOUBLE INCREMENT BINARY ++L 591 322
DECREMENT BINARY -— 592 324
DOUBLE DECREMENT BINARY |——-L 593 326
INCREMENT BCD ++B 594 328
DOUBLE INCREMENT BCD ++BL 595 330
DECREMENT BCD --B 596 332
DOUBLE DECREMENT BCD ——-BL 597 334
3-9-1 INCREMENT BINARY: ++(590)
Purpose Increments the 4-digit hexadecimal content of the specified word by 1.
Ladder Symbol
- | ++(590)
wd Wd: Word
Variations
Variations Executed Each Cycle for ON Condition ++(590)
Executed Once for Upward Differentiation @++(590)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Operand Specifications

320

Block program areas

Step program areas | Subroutines | Interrupt tasks

OK OK OK OK
Area wd

CIO Area CIO 0to CIO 6143

Work Area WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area A448 to A959

Timer Area TOO0OO to T4095

Counter Area C0000 to C4095

DM Area DO to D32767

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses | *DO0 to *D32767
in BCD

Constants

Data Registers DRO to DR15

I ncrement/Decrement | nstructions Section 3-9

Description

Flags

Examples

Area Wd

Index Registers

Indirect addressing ,IRO to ,IR15

using Index Registers | _o048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

~(=-)IRO to, —(- -)IR15

The ++(590) instruction adds 1 to the binary content of Wd. The specified
word will be incremented by 1 every cycle as long as the execution condition
of ++(590) is ON. When the up-differentiated variation of this instruction
(@++(590)) is used, the specified word is incremented only when the execu-
tion condition has gone from OFF to ON.

[wd | -

The Equals Flag will be turned ON if the result is 0000, the Carry Flag will be
turned ON when a digit changes from F to 0, and the Negative Flag will be
turned ON when bit 15 of Wd is ON in the result.

Both the Equals Flag and the Carry Flag will be turned ON when the content
of Wd changes from FFFF to 0000.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the content of Wd is 0000 after execution.
OFF in all other cases.

Carry Flag CY ON if a digit in Wd went from F to O during execution.
OFF in all other cases.

Negative Flag N ON if bit 15 of Wd is ON after execution.
OFF in all other cases.

Operation of ++(590)

In the following example, the content of D100 will be incremented by 1 every
cycle as long as CIO 0.00 is ON.

0.00
P—t++ Incremented every cycle
D100 while CIO 0.00 is ON.
Wd: D100 Wd: D100

Coorsla——{oo1a

¥V : Execution of ++(590)
—Y VAN Y

| |
CIO 0.00 E

Increment Increment Increment Increment

321

I ncrement/Decrement | nstructions Section 3-9

Operation of @++(590)

The up-differentiated variation is used in the following example, so the content
of D100 will be incremented by 1 only when CIO 0.00 has gone from OFF to
ON.

0.00

Incremented only for
up-differentiation.

Wd: D100

——{o014]

V : Execution of @++(590)

@++
D100

Wd: D100

[ooao]n

CIO 0.00

Increment

Increment

3-9-2 DOUBLE INCREMENT BINARY: ++L(591)

Purpose Increments the 8-digit hexadecimal content of the specified words by 1.

Ladder Symbol

— ++L(591)
wd Wd: First word
Variations
Variations Executed Each Cycle for ON Condition ++L(591)
Executed Once for Upward Differentiation @++L(591)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas

Step program areas | Subroutines | Interrupt tasks

OK OK OK OK

Operand Specifications
Area Wd

CIO Area CIO 0to CIO 6142

Work Area WO to W510

Holding Bit Area HO to H510

Auxiliary Bit Area A448 to A958

Timer Area TOO0OO to T4094

Counter Area C0000 to C4094

DM Area DO to D32766

Indirect DM addresses | @ DO to @ D32767

in binary

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants

Data Registers

322

I ncrement/Decrement | nstructions Section 3-9

Description

Flags

Examples

Area Wd
Index Registers IRO to IR15
Indirect addressing ,IRO to ,IR15

using Index Registers | _o048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—~(= IR0 to, (- -)IR15

The ++L(591) instruction adds 1 to the 8-digit hexadecimal content of Wd+1
and Wd. The content of the specified words will be incremented by 1 every
cycle as long as the execution condition of ++L(591) is ON. When the up-dif-
ferentiated variation of this instruction (@++L(591)) is used, the content of the
specified words is incremented only when the execution condition has gone
from OFF to ON.

| wd+1 | wd | +1 [wd+1 | wd |

The Equals Flag will be turned ON if the result is 0000 0000, the Carry Flag
will be turned ON when a digit changes from F to 0, and the Negative Flag will
be turned ON if bit 15 of Wd+1 is ON in the result.

Both the Equals Flag and the Carry Flag will be turned ON when the content
of changes from FFFF FFFF to 0000 0000.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0000 0000 after execution.
OFF in all other cases.

Carry Flag CY ON if a digit in Wd+1 or Wd went from F to 0 during
execution.
OFF in all other cases.

Negative Flag N ON if bit 15 of Wd+1 is ON after execution.
OFF in all other cases.

Operation of ++L(591)

In the following example, the 8-digit hexadecimal content of D101 and D100
will be incremented by 1 every cycle as long as CIO 0.00 is ON.

Incremented every cycle

0.00 ! ¢
while CIO 0.00 is ON.
l—““"++L
D100 Wd+1: D101 Wd: D100 Wd+1: D101 Wd: D100
oooo||FFFF+1—-|ooo1||0000

v : Execution of ++L(591)

Cl00.00 |

Increment Increment Increment Increment

323

I ncrement/Decrement | nstructions Section 3-9

Operation of @++L(591)

The up-differentiated variation is used in the following example, so the content
of D101 and D100 will be incremented by 1 only when CIO 0.00 has gone
from OFF to ON.

0.00

@++L
D100

Incremented only for
up-differentiation.

Wd+1: D101 Wd: D100
0000]| [FFFFJ4u

Wd+1: D101 Wd: D100
0o0oo01]| [0o000

Vv : Execution of @++L(591)
AV Y DAY |

Increment Increment

3-9-3 DECREMENT BINARY: — —(592)

Purpose Decrements the 4-digit hexadecimal content of the specified word by 1.
Ladder Symbol
- -—(592)
wd wd: Word
Variations
Variations Executed Each Cycle for ON Condition ——(592)
Executed Once for Upward Differentiation @--(592)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Operand Specifications

324

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Area wd
CIO Area CIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A448 to A959
Timer Area TOO0O to T4095
Counter Area C0000 to C4095
DM Area DO to D32767

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses | *DO0 to *D32767
in BCD

Constants

Data Registers DRO to DR15

I ncrement/Decrement | nstructions Section 3-9

Description

Flags

Examples

Area Wd

Index Registers

Indirect addressing ,IRO to ,IR15

using Index Registers | _o048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

~(=-)IRO to, —(- -)IR15

The — —(592) instruction subtracts 1 from the binary content of Wd. The spec-
ified word will be decremented by 1 every cycle as long as the execution con-
dition of — —(592) is ON. When the up-differentiated variation of this instruction
(@——(592)) is used, the specified word is decremented only when the execu-
tion condition has gone from OFF to ON.

[wa | -

The Equals Flag will be turned ON if the result is 0000, the Carry Flag will be
turned ON when a digit changes from 0 to F, and the Negative Flag will be
turned ON if bit 15 of Wd is ON in the result.

Both the Carry Flag and the Negative Flag will be turned ON when the content
of Wd changes from 0000 to FFFF.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the content of Wd is 0000 after execution.
OFF in all other cases.

Carry Flag CY ON if a digit in Wd went from 0 to F during execution.
OFF in all other cases.

Negative Flag N ON if bit 15 of Wd is ON after execution.
OFF in all other cases.

Operation of — —(592)

In the following example, the content of D100 will be decremented by 1 every
cycle as long as CIO 0.00 is ON.

0.00

[—— - Decremented every cycle
D100, while CIO 0.00 is ON.

Wd: D100 Wd: D100

o]

V : Execution of — —(592)
Y Y LV _’Lv NPAYA

1
1
1
1
|
1

CIO 0.00

t t

Decrement Decrement Decrement Decrement

325

I ncrement/Decrement | nstructions

Section 3-9

Operation of @— —(592)

The up-differentiated variation is used in the following example, so the content
of D100 will be decremented by 1 only when CIO 0.00 has gone from OFF to

ON.

0.00

@-— Decremented only
for up-differentiation.
D100
Wd: D100 Wd: D100

4 ——foir]

v : Execution of @—-—(592)

[RAY ARTR VAR V A
i

T
‘ |
|
|

Y LV |
A

CIO 0.00

t

Decrement

3-9-4 DOUBLE DECREMENT BINARY: — —L(593)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

326

t

Decrement

Decrements the 8-digit hexadecimal content of the specified words by 1.

—_L(593)

wd Wd: First word

Variations Executed Each Cycle for ON Condition ——L(593)
Executed Once for Upward Differentiation @-—L(593)
Executed Once for Downward Differentiation | Not supported

Immediate Refreshing Specification Not supported

Block program areas

Step program areas | Subroutines | Interrupt tasks

OK OK OK OK
Area wd

CIO Area CIO 0to CIO 6142

Work Area WO to W510

Holding Bit Area HO to H510

Auxiliary Bit Area A448 to A958

Timer Area

TOO0O to T4094

Counter Area

C0000 to C4094

DM Area DO to D32766
Indirect DM addresses | @ DO to @ D32767
in binary

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants

Data Registers

I ncrement/Decrement | nstructions Section 3-9

Description

Flags

Examples

0.01

Area Wd
Index Registers
Indirect addressing ,IRO to ,IR15
using Index Registers | _5048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
—~(= IR0 to, (- -)IR15

The — —L(593) instruction subtracts 1 from the 8-digit hexadecimal content of
Wd+1 and Wd. The content of the specified words will be decremented by 1
every cycle as long as the execution condition of ——L(593) is ON. When the
up-differentiated variation of this instruction (@- —L(593)) is used, the content
of the specified words is decremented only when the execution condition has
gone from OFF to ON.

[wasr | wd | -1 | wde1 | wd |

The Equals Flag will be turned ON if the result is 0000 0000, the Carry Flag
will be turned ON when a digit changes from 0 to F, and the Negative Flag will
be turned ON if bit 15 of Wd+1 is ON in the result.

Both the Carry Flag and the Negative Flag will be turned ON when the content
changes from 0000 0000 to FFFF FFFF.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0000 0000 after execution.
OFF in all other cases.

Carry Flag CY ON if a digit in Wd+1 or Wd went from 0 to F during exe-
cution.
OFF in all other cases.

Negative Flag N ON if bit 15 of Wd+1 is ON after execution.
OFF in all other cases.

Operation of — —L(593)

In the following example, the 8-digit hexadecimal content of D201 and D200
will be decremented by 1 every cycle as long as CIO 0.01 is ON.

Decremented every cycle

while CIO 0.01 is ON.

D200 Wd+1: D201 Wd: D200 Wd+1: D201 Wd: D200

0001]| [0ooo| 1———0o00o0| [FFFF|

¥V : Execution of — —L(593)

0.01

Decrement Decrement Decrement Decrement

327

I ncrement/Decrement | nstructions Section 3-9

Operation of @— —L(593)

The up-differentiated variation is used in the following example, so the content
of D201 and D200 will be decremented by 1 only when CIO 0.01 has gone
from OFF to ON.

Decremented only

0.01 for up-differentiation.

il

i @--L Wd+1: D201 Wd: D200 Wd+1: D201 Wd: D200
D200 0001| [pooo]| 4 oooo| [FFFF

V : Execution of @ —-L(593)
TRV A DUV AN |

Decrement Decrement
3-9-5 INCREMENT BCD: ++B(594)
Purpose Increments the 4-digit BCD content of the specified word by 1.
Ladder Symbol
— | ++B(594)
wd wd: Word
Variations
Variations Executed Each Cycle for ON Condition ++B(594)
Executed Once for Upward Differentiation @++B(594)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported
Applicable Program Areas
Block program areas | Step program areas | Subroutines | Interrupt tasks
OK OK OK OK

Operand Specifications

328

Area wd
CIO Area CIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A448 to A959
Timer Area TOOO0O to T4095
Counter Area C0000 to C4095
DM Area DO to D32767

Indirect DM addresses
in BCD

@ DO to @ D32767

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants

Data Registers

DRO to DR15

I ncrement/Decrement | nstructions

Section 3-9

Description

Flags

Precautions

Examples

Area wd
Index Registers

Indirect addressing
using Index Registers

IR0 to ,IR15

—2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(=9)IR0 to, —(- -)IR15

The ++B(594) instruction adds 1 to the BCD content of Wd. The specified
word will be incremented by 1 every cycle as long as the execution condition
of ++B(594) is ON. When the up-differentiated variation of this instruction
(@++B(594)) is used, the specified word is incremented only when the execu-
tion condition has gone from OFF to ON.

[wd | + [wd |

The Equals Flag will be turned ON if the result is 0000 and the Carry Flag will
be turned ON when a digit changes from 9 to 0.

Both the Equals Flag and the Carry Flag will be turned ON when the content
of Wd changes from 9999 to 0000.

Name Label Operation
Error Flag ER ON if the content of Wd is not BCD.
OFF in all other cases.
Equals Flag = ON if the content of Wd is 0000 after execution.
OFF in all other cases.
Carry Flag CY ON if a digit in Wd went from 9 to 0 during execution.
OFF in all other cases.

The content of Wd must be BCD. If it is not BCD, an error will occur and the
Error Flag will be turned ON.
Operation of ++B(594)

In the following example, the BCD content of D100 will be incremented by 1
every cycle as long as CIO 0.00 is ON.

0.00 Incremented every cycle
while CIO 0.00 is ON.
|———— ++B
D100 Wd: D100 Wd: D100

Pors]u— poeo

¥V : Execution of ++B(594)

Increment Increment

Increment Increment

329

I ncrement/Decrement | nstructions

Section 3-9

Operation of @++B(594)

The up-differentiated variation is used in the following example, so the content
of D100 will be incremented by 1 only when CIO 0.00 has gone from OFF to

ON.

@++B

D100

0.00
|—|—

Wd: D100

Incremented only for
up-differentiation.

Wd: D100

+1

¥ : Execution of @++B(594)

Increment

Increment

3-9-6 DOUBLE INCREMENT BCD: ++BL(595)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

330

Increments the 8-digit BCD content of the specified words by 1.

++BL(595)
Wwd Wd: First word
Variations Executed Each Cycle for ON Condition ++BL(595)
Executed Once for Upward Differentiation @++BL(595)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas

Step program areas | Subroutines

Interrupt tasks

OK OK OK OK
Area Wd

CIO Area CIO 0to CIO 6142

Work Area WO to W510

Holding Bit Area HO to H510

Auxiliary Bit Area A448 to A958

Timer Area TOO0OO to T4094

Counter Area C0000 to C4094

DM Area DO to D32766

Indirect DM addresses | @ DO to @ D32767

in BCD

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants

Data Registers

I ncrement/Decrement | nstructions

Section 3-9

Area

wd

Index Registers

Indirect addressing
using Index Registers

IR0 to ,IR15

—2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(=9)IR0 to, —(- -)IR15

Description The ++BL(595) instruction adds 1 to the 8-digit BCD content of Wd+1 and
Wd. The content of the specified words will be incremented by 1 every cycle
as long as the execution condition of ++BL(595) is ON. When the up-differen-
tiated variation of this instruction (@++BL(595)) is used, the content of the
specified words is incremented only when the execution condition has gone
from OFF to ON.
| wa+1 | wd | +1 [wa+1 | wd |
The Equals Flag will be turned ON if the result is 0000 0000 and the Carry
Flag will be turned ON when a digit changes from 9 to 0.

Both the Equals Flag and the Carry Flag will be turned ON when the content

of changes from 9999 9999 to 0000 0000.

Flags
Name Label Operation

Error Flag ER ON if the content of Wd+1 and Wd is not BCD.
OFF in all other cases.

Equals Flag = ON if the result is 0000 0000 after execution.
OFF in all other cases.

Carry Flag CY ON if a digit in Wd+1 or Wd went from 9 to 0 during exe-
cution.
OFF in all other cases.

Precautions

The content of Wd+1 and Wd must be BCD. If it is not BCD, an error will occur

and the Error Flag will be turned ON.

Examples

Operation of ++BL(595)

In the following example, the 8-digit BCD content of D201 and D200 will be
incremented by 1 every cycle as long as CIO 0.01 is ON.

0.01 Incremented every cycle
e — while CIO 0.01 is ON.
D200 Wd+1: D201 Wd: D200 Wd+1: D201 Wd: D200
0000]| (9900 [+ ooo1]| Joooo
¥V : Execution of ++BL(595)
| Y .V LV LV LV T
CIO 0.01 E

o A

Increment Increment

Increment Increment

331

I ncrement/Decrement | nstructions

Section 3-9

0.01

|_

@++BL

D200:

3-9-7 DECREMENT

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Operation of @++BL(595)

The up-differentiated variation is used in the following example, so the BCD
content of D201 and D200 will be incremented by 1 only when CIO 0.01 has

gone from OFF to ON.
Incremented only for
up-differentiation.
Wd+1: D201 Wd: D200 Wd+1: D201 Wd: D200
0000]| 0900] poo1]| Joooo
V: Execution of @++BL(595)
BEER
ClO 0.01

—_—T

Increment

Increment

BCD: — —B(596)

Decrements the 4-digit BCD content of the specified word by 1.

—_B(596)

wd Wd: Word

Variations Executed Each Cycle for ON Condition ——B(596)
Executed Once for Upward Differentiation @— —B(596)
Executed Once for Downward Differentiation | Not supported

Immediate Refreshing Specification Not supported

Block program areas

Step program areas | Subroutines

Interrupt tasks

OK OK OK OK
Area Wd

CIO Area CIO 0to CIO 6143

Work Area WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area A448 to A959

Timer Area TOO0O0O to T4095

Counter Area C0000 to C4095

DM Area DO to D32767

Indirect DM addresses
in BCD

@ DO to @ D32767

Indirect DM addresses
in BCD

*DO to *D32767

Constants

Data Registers

DRO to DR15

332

I ncrement/Decrement | nstructions Section 3-9

Description

Flags

Precautions

Examples

0.00

Area Wd

Index Registers

Indirect addressing ,IRO to ,IR15

using Index Registers | _o048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

~(=-)IRO to, —(- -)IR15

The — —B(596) instruction subtracts 1 from the BCD content of Wd. The spec-
ified word will be decremented by 1 every cycle as long as the execution con-
dition of —-B(596) is ON. When the up-differentiated variation of this
instruction (@--B(596)) is used, the specified word is decremented only
when the execution condition has gone from OFF to ON.

[wd | 1

The Equals Flag will be turned ON if the result is 0000 and the Carry Flag will
be turned ON when a digit changes from 0 to 9.

Name Label Operation
Error Flag ER ON if the content of Wd is not BCD.
OFF in all other cases.
Equals Flag = ON if the content of Wd is 0000 after execution.
OFF in all other cases.
Carry Flag CY ON if a digit in Wd went from 0 to 9 during execution.
OFF in all other cases.

The content of Wd must be BCD. If it is not BCD, an error will occur and the
Error Flag will be turned ON.

Operation of — —B(596)

In the following example, the BCD content of D1000 will be decremented by 1
every cycle as long as CIO 0.00 is ON.

Decremented every cycle

while CIO 0.00 is ON.

D1000 Wd: D1000 Wd: D1000

a———foo s

¥ : Execution of — — B(596)

Decrement Decrement Decrement Decrement

333

I ncrement/Decrement | nstructions

Section 3-9

Operation of @— —-B(596)

The up-differentiated variation is used in the following example, so the BCD
content of D1000 will be decremented by 1 only when CIO 0.00 has gone

from OFF to ON.

@--B

Decremented only

D1000 for up-differentiation.

0.00
'4%——

Wd: D1000 Wd: D1000

oozo]i—oois]

¥V : Execution of @—-B(596)
AV I

1
|
CIO 0.00 J

Decrement

Decrement

3-9-8 DOUBLE DECREMENT BCD: — -BL(597)

Purpose

Ladder Symbol

Variations

Decrements the 8-digit BCD content of the specified words by 1.

- -BL(597)
wd Wd: First word
Variations Executed Each Cycle for ON Condition ——BL(597)
Executed Once for Upward Differentiation @--BL(597)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK OK OK OK

Operand Specifications
Area Wd

CIO Area CIO 0to CIO 6142

Work Area WO to W510

Holding Bit Area HO to H510

Auxiliary Bit Area A448 to A958

Timer Area TOO0O0O to T4094

Counter Area CO0000 to C4094

DM Area DO to D32766

Indirect DM addresses | @ DO to @ D32767

in BCD

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants

Data Registers

334

I ncrement/Decrement | nstructions

Section 3-9

Area

wd

Index Registers

Indirect addressing
using Index Registers

IR0 to ,IR15

—2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(=9)IR0 to, —(- -)IR15

The — —BL(597) instruction subtracts 1 from the 8-digit BCD content of Wd+1

and Wd. The content of the specified words will be decremented by 1 every
cycle as long as the execution condition of — —BL(597) is ON. When the up-
differentiated variation of this instruction (@— —-BL(597)) is used, the content
of the specified words is decremented only when the execution condition has

| wa+1 | wd |

The Equals Flag will be turned ON if the result is 0000 0000 and the Carry
Flag will be turned ON when a digit changes from 0 to 9.

Operation

ON if the content of Wd+1 and Wd is not BCD.
OFF in all other cases.

ON if the result is 0000 0000 after execution.
OFF in all other cases.

Description
gone from OFF to ON.
| wa+t | wd | -1
Flags
Name Label
Error Flag ER
Equals Flag =
Carry Flag CY

ON if a digit in Wd+1 or Wd went from 0 to 9 during exe-
cution.

OFF in all other cases.

Precautions

The content of Wd+1 and Wd must be BCD. If it is not BCD, an error will occur

and the Error Flag will be turned ON.

Examples

Operation of — —BL(597)

In the following example, the 8-digit BCD content of D2001 and D2000 will be
decremented by 1 every cycle as long as CIO 0.01 is ON.

0.01

--BL
D2000

Wd+1: D2001 Wd: D2000

Decremented every cycle
while CIO 0.01 is ON.

Wd+1: D2001 Wd: D2000

0001 | 0000

-1

[oooo0| [ooss

Cl0 0.01

V : Execution of — —-BL(597)

i

T VA ¥ A U v AR DU

t

Decrement Decrement

t t t

Decrement Decrement

335

Symbol Math I nstructions Section 3-10

Operation of @— -BL(597)

The up-differentiated variation is used in the following example, so the BCD
content of D2001 and D2000 will be decremented by 1 only when CIO 0.01
has gone from OFF to ON.

Decremented only

0.01 for up-differentiation.
@--BL Wd+1: D2001 Wd: D2000 Wd+1: D2001 Wd: D2000
D2000 0001 | [0ooo| -1 pooo| [pooo

V¥ : Execution of @— -BL(597)
Y AV AV

-
-

Cl0 0.01 |

Decrement Decrement

3-10 Symbol Math Instructions

This section describes the Symbol Math Instructions, which perform arith-
metic operations on BCD or binary data.

Instruction Mnemonic Function code Page
SIGNED BINARY ADD WITH- |+ 400 337
OUT CARRY
DOUBLE SIGNED BINARY +L 401 339
ADD WITHOUT CARRY
SIGNED BINARY ADD WITH |+C 402 341
CARRY
DOUBLE SIGNED BINARY +CL 403 343
ADD WITH CARRY
BCD ADD WITHOUT CARRY |+B 404 345
DOUBLE BCD ADD WITHOUT | +BL 405 346
CARRY
BCD ADD WITH CARRY +BC 406 348
DOUBLE BCD ADD WITH +BCL 407 349
CARRY
SIGNED BINARY SUBTRACT |- 410 351
WITHOUT CARRY
DOUBLE SIGNED BINARY -L 411 353
SUBTRACT WITHOUT CARRY
SIGNED BINARY SUBTRACT |-C 412 357
WITH CARRY
DOUBLE SIGNED BINARY —-CL 413 359
SUBTRACT WITH CARRY
BCD SUBTRACT WITHOUT -B 414 361
CARRY
DOUBLE BCD SUBTRACT -BL 415 363
WITHOUT CARRY
BCD SUBTRACT WITH -BC 416 366
CARRY
DOUBLE BCD SUBTRACT -BCL 417 367
WITH CARRY
SIGNED BINARY MULTIPLY * 420 369

336

Symbol Math I nstructions

Purpose

Ladder Symbol

Variations

Section 3-10
Instruction Mnemonic Function code Page
DOUBLE SIGNED BINARY *L 421 371
MULTIPLY
UNSIGNED BINARY MULTI- *U 422 372
PLY
DOUBLE UNSIGNED BINARY | *UL 423 374
MULTIPLY
BCD MULTIPLY *B 424 375
DOUBLE BCD MULTIPLY *BL 425 377
SIGNED BINARY DIVIDE / 430 378
DOUBLE SIGNED BINARY /L 431 380
DIVIDE
UNSIGNED BINARY DIVIDE U 432 382
DOUBLE UNSIGNED BINARY | /UL 433 384
DIVIDE
BCD DIVIDE /B 434 385
DOUBLE BCD DIVIDE /BL 435 387
3-10-1 SIGNED BINARY ADD WITHOUT CARRY: +(400)
Adds 4-digit (single-word) hexadecimal data and/or constants.
— +(400)
Au Au: Augend word
Ad Ad: Addend word
R R: Result word
Variations Executed Each Cycle for ON Condition +(400)
Executed Once for Upward Differentiation @+(400)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Applicable Program Areas

Operand Specifications

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Area Au Ad R
CIO Area CIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959 A448 to A959
Timer Area TOO0OO to T4095
Counter Area CO0000 to C4095
DM Area DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary

Indirect DM addresses

in BCD

*DO0 to *D32767

337

Symbol Math I nstructions Section 3-10

Area Au | Ad R
Constants #0000 to #FFFF (binary)
&0 to &65535 (unsigned decimal)
—32768 to 0 to 32767 (signed decimal)

Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

using Index Registers | _o048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JIRO+(++) t0 IR15+(++)

—~(= IR0 to, (-~ -)IR15

Description +(400) adds the binary values in Au and Ad and outputs the result to R.
(Signed binary)
+ (Signed binary)

CY will turn
g';‘\évgr?; there [cy [[R | (Signed binary)
Flags
Name Label Operation
Error Flag ER OFF
Equals Flag = ON when the result is 0.
OFF in all other cases.
Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.
Overflow Flag OF ON when the result of adding two positive numbers is in
the range 8000 to FFFF hex.
OFF in all other cases.
Underflow Flag |UF ON when the result of adding two negative numbers is in
the range 0000 to 7FFF hex.
OFF in all other cases.
Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.
Precautions When +(400) is executed, the Error Flag will turn OFF.
If as a result of the addition, the content of R is 0000 hex, the Equals Flag will
turn ON.

If the addition results in a carry, the Carry Flag will turn ON.

If the result of adding two positive numbers is negative (in the range 8000 to
FFFF hex), the Overflow Flag will turn ON.

If the result of adding two negative numbers is positive (in the range 0000 to
7FFF hex), the Underflow Flag will turn ON.

If as a result of the addition, the content of the leftmost bit of R is 1, the Nega-
tive Flag will turn ON.

338

Symbol Math I nstructions

Section 3-10

Examples

When CIO 0.00 is ON in the following example, D100 and D110 will be added
as 4-digit signed binary values and the result will be output to D120.

0.00
—
D100
D110
D120

3-10-2 DOUBLE SIGNED BINARY ADD WITHOUT CARRY: +L(401)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Adds 8-digit (double-word) hexadecimal data and/or constants.

| +L(401)
Au Au: 1st augend word
Ad Ad: 1st addend word
R R: 1st result word
Variations Executed Each Cycle for ON Condition +L(401)
Executed Once for Upward Differentiation @+L(401)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Area Au Ad R
CIO Area CIO 0to CIO 6142
Work Area WO to W510
Holding Bit Area HO to H510
Auxiliary Bit Area A0 to A958 A448 to A958
Timer Area TOOO0O to T4094
Counter Area C0000 to C4094
DM Area DO to D32766

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants

mal)

decimal)

#00000000 to #FFFFFFFF (binary)
&0 to &4294967295 (unsigned deci-

—2147483648 to 2147483647 (signed

Data Registers

339

Symbol Math I nstructions Section 3-10
Area Au Ad | R
Index Registers IRO to IR15
Indirect addressing ,IRO to ,IR15

Description

Flags

Precautions

Examples

340

using Index Registers | _o048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—~(= IR0 to, (- -)IR15

+L(401) adds the binary values in Au and Au+1 and Ad and Ad+1 and outputs
the result to R.

| Au+l | | Au | (Signed binary)
+ | Ad+1 | | Ad | (Signed binary)
CY will turn
ON when there | CY | | R+1 | | R | (Signed binary)
IS a carry.
Name Label Operation
Error Flag ER OFF
Equals Flag = ON when the result is 0.
OFF in all other cases.
Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.
Overflow Flag OF ON when the result of adding two positive numbers is in

the range 00000000 to 7FFFFFFF hex.
OFF in all other cases.

Underflow Flag |UF ON when the result of adding two negative numbers is in
the range 00000000 to 7FFFFFFF hex.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.

When +L(401) is executed, the Error Flag will turn OFF.

If as a result of the addition, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

If the addition results in a carry, the Carry Flag will turn ON.

If the result of adding two positive numbers is negative (in the range
80000000 to FFFFFFFF hex), the Overflow Flag will turn ON.
If the result of adding two negative numbers is positive (in the range
00000000 to 7FFFFFFF hex), the Underflow Flag will turn ON.

If as a result of the addition, the content of the leftmost bit of R+1 is 1, the
Negative Flag will turn ON.

When CIO 0.01 is ON, D200 and D201 and D211 and D210 will be added as
8-digit signed binary values and the result will be output to D221 and D220.

0.01
—
D200
D210
D220

Symbol Math I nstructions

Section 3-10

3-10-3 SIGNED BINARY ADD WITH CARRY: +C(402)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Adds 4-digit (single-word) hexadecimal data and/or constants with the Carry

Flag (CY).
| +C(402)
Au Au: Augend word
Ad Ad: Addend word
R R: Result word
Variations Executed Each Cycle for ON Condition +C(402)
Executed Once for Upward Differentiation @+C(402)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Block program areas

Step program areas Subroutines

Interrupt tasks

OK OK OK OK
Area Au Ad R
CIO Area CIO0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area TOO0O0O to T4095
Counter Area C0000 to C4095
DM Area DO to D32767

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants

#0000 to #FFFF (binary)
&0 to &65535 (unsigned decimal)
—32768 to 0 to 32767 (signed decimal)

Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

using Index Registers

—2048 to +2047 IR0 to —2048 to +2047 IR15
DRO to DR15, IR0 to IR15

JRO+(++) to IR15+(++)

~(= -)IRO to, (- -)IR15

341

Symbol Math I nstructions Section 3-10

Description +C(402) adds the binary values in Au, Ad, and CY and outputs the result to R.

(Signed binary)
(Signed binary)

v
CY will turn
ONwhenthere | cy | [R | (Signed binary)
is a carry.
Flags
Name Label Operation
Error Flag ER OFF
Equals Flag = ON when the addition result is O.
OFF in all other cases.
Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.
Overflow Flag OF ON when the addition result of adding two positive num-
bers and CY is in the range 8000 to FFFF hex.
OFF in all other cases.
Underflow Flag |UF ON when the addition result of adding two negative num-
bers and CY is in the range 0000 to 7FFF hex.
OFF in all other cases.
Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.
Precautions When +C(402) is executed, the Error Flag will turn OFF.
If as a result of the addition, the content of R is 0000 hex, the Equals Flag will
turn ON.
If the addition results in a carry, the Carry Flag will turn ON.
If the result of adding two positive numbers and CY is negative (in the range
8000 to FFFF hex), the Overflow Flag will turn ON.
If the result of adding two negative numbers and CY is positive (in the range
0000 to 7FFF hex), the Underflow Flag will turn ON.
If as a result of the addition, the content of the leftmost bit of R is 1, the Nega-
tive Flag will turn ON.
Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.
Examples When CIO 0.00 is ON, D200, D210, and CY will be added as 4-digit signed
binary values and the result will be output to D220.
0.00
F—+c
D200
D210
D220

342

Symbol Math I nstructions

Section 3-10

3-10-4 DOUBLE SIGNED BINARY ADD WITH CARRY: +CL(403)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Adds 8-digit (double-word) hexadecimal data and/or constants with the Carry

Flag (CY).
— | +CL(403)
Au Au: 1st augend word
Ad Ad: 1st addend word
R R: 1st result word
Variations Executed Each Cycle for ON Condition +CL(403)
Executed Once for Upward Differentiation @+CL(403)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Block program areas

Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R
CIO Area CIO 0to CIO 6142
Work Area WO to W510
Holding Bit Area HO to H510
Auxiliary Bit Area A0 to A958 A448 to A958
Timer Area TOO0O0O to T4094

Counter Area

C0000 to C4094

DM Area

DO to D32766

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants #00000000 to #FFFFFFFF (binary)
&0 to &4294967295 (unsigned deci-
mal)
—2147483648 to 2147483647 (signed
decimal)

Data Registers

Index Registers

Indirect addressing ,IRO to ,IR15

using Index Registers

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(= IR0 to, —(- -)IR15

343

Symbol Math I nstructions

Section 3-10

Description

Flags

Precautions

Note

Examples

+CL(403) adds the binary values in Au and Au+1, Ad and Ad+1, and CY and
outputs the result to R.

[avs1 || Au | (Signed binary)

| Ad+1 || Ad | (Signed binary)

:

CY will turn
ONwhenthere| cy | | R+1 || R | (Signed binary)
is a carry.

Name Label Operation
Error Flag ER OFF
Equals Flag = ON when the result is 0.

OFF in all other cases.

Carry Flag CY ON when the results in a carry.

OFF in all other cases.

Overflow Flag OF ON when the result of adding two positive numbers and
CY is in the range 80000000 to FFFFFFFF hex.

OFF in all other cases.

Underflow Flag |UF ON when the result of adding two negative nhumbers and

CY is in the range 00000000 to 7FFFFFFF hex.
OFF in all other cases.

ON when the leftmost bit of the result is 1.
OFF in all other cases.

Negative Flag N

When +CL(403) is executed, the Error Flag will turn OFF.

If as a result of the addition, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

If the addition results in a carry, the Carry Flag will turn ON.

If the result of adding two positive numbers and CY is negative (in the range
80000000 to FFFFFFFF hex), the Overflow Flag will turn ON.

If the result of adding two negative numbers and CY is positive (in the range
00000000 to 7FFFFFFF hex), the Underflow Flag will turn ON.

If as a result of the addition, the content of the leftmost bit of R+1 is 1, the
Negative Flag will turn ON.
To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

When CIO 0.01 is ON, D1001, D1000, D1011, D1010, and CY will be added
as 8-digit signed binary values, and the result will be output to D2001 and
D2000.

0.01
——+cL
D1000
D1010
D2000

Symbol Math I nstructions Section 3-10
3-10-5 BCD ADD WITHOUT CARRY: +B(404)
Purpose Adds 4-digit (single-word) BCD data and/or constants.
Ladder Symbol
— | +B(404)
Au Au: Augend word
Ad Ad: Addend word
R R: Result word
Variations
Variations Executed Each Cycle for ON Condition +B(404)
Executed Once for Upward Differentiation @+B(404)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Applicable Program Areas

Operand Specifications

Description

Block program areas

Step program areas Subroutines

Interrupt tasks

OK OK OK OK
Area Au Ad R
CIO Area CIO0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area TOO0O0O to T4095

Counter Area C0000 to C4095

DM Area DO to D32767

Indirect DM addresses | @ DO to @ D32767

in binary

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants 0000 to 9999 (BCD)

using Index Registers

Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

—2048 to +2047 IR0 to —2048 to +2047
DRO to DR15, IR0 to IR15

JRO+(++) t0 IR15+(++)

—~(= IR0 to, —(- -)IR15

,IR15

+B(404) adds the BCD values in Au and Ad and outputs the result to R.

ecD)

. (BCD)

CY will turn
ON when there

[cy|[r

| (BcD)

is a carry.

345

Symbol Math Instructions Section 3-10
Flags
Name Label Operation
Error Flag ER ON when Au is not BCD.
ON when Ad is not BCD.
OFF in all other cases.
Equals Flag = ON when the result is 0.
OFF in all other cases.
Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

Precautions

If Au or Ad is not BCD, an error is generated and the Error Flag will turn ON.

If as a result of the addition, the content of R is 0000 hex, the Equals Flag will

turn ON.

If an addition results in a carry, the Carry Flag will turn ON.

Examples

as 4-digit BCD values, and the result will be output to D120.

0.00

F_____

+B

D100

D110

D120

3-10-6 DOUBLE BCD ADD WITHOUT CARRY: +BL(405)

When CIO 0.00 is ON in the following example, D100 and D110 will be added

Purpose Adds 8-digit (double-word) BCD data and/or constants.
Ladder Symbol
—| +BL(405)
Au Au: 1st augend word
Ad Ad: 1st addend word
R R: 1st result word
Variations
Variations Executed Each Cycle for ON Condition +BL(405)
Executed Once for Upward Differentiation @+BL(405)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Applicable Program Areas

Block program areas

Step program areas Subroutines

Interrupt tasks

OK OK OK OK

Operand Specifications
Area Au Ad R

CIO Area CIO 0to CIO 6142

Work Area WO to W510

Holding Bit Area HO to H510

Auxiliary Bit Area AO to A958 A448 to A958

Timer Area TOO0OO to T4094

Counter Area CO0000 to C4094

346

Symbol Math I nstructions

Section 3-10

Description

Flags

Precautions

Examples

Area Au | Ad | R
DM Area DO to D32766
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #00000000 to #99999999 (BCD) |

Data Registers ---

Index Registers

Indirect addressing ,IRO to ,IR15

using Index Registers | _204g to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JIRO+(++) t0 IR15+(++)

~(=-)IRO to, «(- -)IR15

+BL(405) adds the BCD values in Au and Au+1 and Ad and Ad+1 and outputs
the result to R, R+1.

[avii || au | BCD)
+ LAdsr | |_Aad__| (BCD)
CY will turn
ON when thereI cY l l Rtl l l R l (BCD)
is a carry.
Name Label Operation
Error Flag ER ON when Au, Au +1 is not BCD.
ON when Ad, Ad +1 is not BCD.
OFF in all other cases.
Equals Flag = ON when the result is 0.
OFF in all other cases.
Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

If Au, Au +1 or Ad, Ad +1 are not BCD, an error is generated and the Error
Flag will turn ON.

If as a result of the addition, the content of R, R +1 is 00000000 hex, the
Equals Flag will turn ON.

If an addition results in a carry, the Carry Flag will turn ON.
When CIO 0.01 is ON in the following example, D1001 and D1000 and D1101

and D1100 will be added as 8-digit BCD values, and the result will be output
to D1201 and D1200.

0.01
—-8L
D1000
D1100-
D1200

347

Symbol Math I nstructions Section 3-10

3-10-7 BCD ADD WITH CARRY: +BC(406)

Purpose Adds 4-digit (single-word) BCD data and/or constants with the Carry Flag
(CY).
Ladder Symbol
—| +BC(406)
Au Au: Augend word
Ad Ad: Addend word
R R: Result word
Variations
Variations Executed Each Cycle for ON Condition +BC(406)
Executed Once for Upward Differentiation @+BC(406)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.
Applicable Program Areas
Block program areas | Step program areas Subroutines Interrupt tasks
OK OK OK OK
Operand Specifications
Area Au Ad R
ClO Area ClIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959 A448 to A959
Timer Area TOO00O0 to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO to *D32767
in BCD
Constants #0000 to 9999 (BCD)
Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15
using Index Registers | _2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
IRO+(++) to ,IR15+(++)
—~(=9)IRO0 to, (- -)IR15

Description +BC(406) adds BCD values in Au, Ad, and CY and outputs the result to R.
(BCD)
(BCD)
+
SL Vv\\llirl1letgrtnhere Lev| [R | (BCD)
is a carry.

348

Symbol Math I nstructions

Section 3-10

Flags
Name Label Operation

Error Flag ER ON when Au is not BCD.
ON when Ad is not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

Precautions

If Au or Ad is not BCD, an error is generated and the Error Flag will turn ON.

If as a result of the addition, the content of R is 0000 hex, the Equals Flag will

turn ON.

If an addition results in a carry, the Carry Flag will turn ON.

Note To clear the Carry Flay (CY), execute the Clear Carry (CLC(041)) instruction.
Examples When CIO 0.00 is ON in the following example, D100, D200, and CY will be
added as 4-digit BCD values, and the result will be output to D300.
0.00
——+scC

D100

D200

D300

3-10-8 DOUBLE BCD ADD WITH CARRY: +BCL(407)

Purpose Adds 8-digit (double-word) BCD data and/or constants with the Carry Flag
(CY).
Ladder Symbol
— | +BCL(407)
Au Au: 1st augend word
Ad Ad: 1st addend word
R R: 1st result word
Variations
Variations Executed Each Cycle for ON Condition +BCL(407)
Executed Once for Upward Differentiation @+BCL(407)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Applicable Program Areas

Block program areas

Step program areas Subroutines

Interrupt tasks

OK OK OK OK
Operand Specifications
Area Au Ad R
CIO Area CIO 0to CIO 6142
Work Area WO to W510
Holding Bit Area HO to H510
Auxiliary Bit Area A0 to A958 A448 to A958

349

Symbol Math I nstructions Section 3-10
Area Au Ad | R
Timer Area TOO0OO to T4094
Counter Area CO0000 to C4094
DM Area DO to D32766
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #00000000 to #99999999 (BCD) |

Description

Flags

Precautions

Note

Examples

350

Data Registers

Index Registers

Indirect addressing ,IRO to ,IR15

using Index Registers | _»04g to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(=-)IRO to, (= -)IR15

+BCL(407) adds the BCD values in Au and Au+1, Ad and Ad+1, and CY and
outputs the result to R, R+1.

[avvi || au | BCD)
[Ad+1 || ad | (BCD)
'
CY will turn
ON when therel cY | | R+1 | | R | (BCD)
is a carry.
Name Label Operation
Error Flag ER ON when Au, Au +1 is not BCD.
ON when Ad, Ad +1 is not BCD.
OFF in all other cases.
Equals Flag = ON when the result is 0.
OFF in all other cases.
Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

If Au, Au +1 or Ad, Ad +1 are not BCD, an error is generated and the Error
Flag will turn ON.

If as a result of the addition, the content of R, R +1 is 00000000 hex, the
Equals Flag will turn ON.

If an addition results in a carry, the Carry Flag will turn ON.
To clear the Carry Flay (CY), execute the Clear Carry (CLC(041)) instruction.

When CIO 0.01 is ON in the following example, D1001, D1000, D1101,
D1100, and CY will be added as 8-digit BCD values, and the result will be out-
put to D1201 and D1200.

0.01
——+BCL
D1000
D1100'
D1200

Symbol Math I nstructions Section 3-10

3-10-9 SIGNED BINARY SUBTRACT WITHOUT CARRY: —(410)

Purpose Subtracts 4-digit (single-word) hexadecimal data and/or constants.

Ladder Symbol

— | -(410)
Mi Mi: Minuend word
Su Su: Subtrahend word
R R: Result word
Variations
Variations Executed Each Cycle for ON Condition —(410)

Executed Once for Upward Differentiation @-(410)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Applicable Program Areas

Block program areas | Step program areas Subroutines Interrupt tasks

OK OK OK OK

Operand Specifications
Area Mi Su R

CIO Area ClO 0to CIO 6143

Work Area WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area TO0O0O0 to T4095

Counter Area C0000 to C4095

DM Area DO to D4095

Indirect DM addresses | @ DO to @ D32767

in binary

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants #0000 to #FFFF (binary)

&0 to &65535 (unsigned decimal)
—32768 to 32767 (signed decimal)

Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

using Index Registers | _o048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) t0 ,IR15+(++)

—~(= IR0 to, (- -)IR15

351

Symbol Math I nstructions Section 3-10

Description —(400) subtracts the binary values in Su from Mi and outputs the result to R.
When the result is negative, it is output to R as a 2's complement. (Refer to 3-
10-10 DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY: —L(411)
for an example of handling 2's complements.)

(Signed binary)
(Signed binary)

[cv][R | (signedbinary)

CY will turn ON
when there is a
borrow.

Flags

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.

Overflow Flag OF ON when the result of subtracting a negative number from
a positive number is in the range 8000 to FFFF hex.

OFF in all other cases.

Underflow Flag |UF ON when the result of subtracting a negative number from
a positive number is in the range 0000 to 7FFF hex.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.

Precautions When —(410) is executed, the Error Flag will turn OFF.

If as a result of the subtraction, the content of R is 0000 hex, the Equals Flag
will turn ON.

If the subtraction results in a borrow, the Carry Flag will turn ON.

If the result of subtracting a negative number from a positive number is nega-
tive (in the range 8000 to FFFF hex), the Overflow Flag will turn ON.

If the result of subtracting a positive number from a negative number is posi-
tive (in the range 0000 to 7FFF hex), the Underflow Flag will turn ON.

If as a result of the subtraction, the content of the leftmost bit of R is 1, the
Negative Flag will turn ON.

Examples When CIO 0.00 is ON in the following example, D200 will be subtracted from
D100 as 4-digit signed binary values and the result will be output to D300.

0.00

1

D100
D200
D300

352

Symbol Math I nstructions

Section 3-10

3-10-10 DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY: —L(411)

Purpose
Ladder Symbol
— 1 -L(411)
Mi
Su
R

Variations

Subtracts 8-digit (double-word) hexadecimal data and/or constants.

Mi: Minuend word

Su: Subtrahend word

R: Result word

Variations Executed Each Cycle for ON Condition —L(411)
Executed Once for Upward Differentiation @-L(411)
Executed Once for Downward Differentiation | Not supported.

Immediate Refreshing Specification Not supported.

Applicable Program Areas

Block program areas

Step program areas Subroutines | Interrupt tasks

OK OK OK OK
Operand Specifications
Area Mi Su R
CIO Area CIO 0to CIO 6142
Work Area WO to W510
Holding Bit Area HO to H510
Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area

TOO00O to T4094

Counter Area

C0000 to C4094

DM Area

DO to D32766

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants

#00000000 to #FFFFFFFF (binary)
&0 to &4294967295 (unsigned deci-

using Index Registers

mal)
—2147483648 to 2147483647 (signed
decimal)

Data Registers

Index Registers IRO to IR15

Indirect addressing ,IRO to ,IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)

—~(=-)IRO to, —(- -)IR15

353

Symbol Math I nstructions

Section 3-10

Description

Flags

Precautions

Examples

354

—L(411) subtracts the binary values in Su and Su+1 from Mi and Mi+1 and
outputs the result to R, R+1. When the result is negative, it is output to R and
R+1 as a 2's complement.

[mi+1 || ™ | (Signed binary)
| Su+1 | | Su | (Signed binary)
CY will turn .)
ONwhenthere | cY |[rRe1 || R | (Signed binary)
is a borrow.
Name Label Operation
Error Flag ER OFF
Equals Flag = ON when the result is 0.
OFF in all other cases.
Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.
Overflow Flag OF ON when the result of subtracting a negative number

from a positive number is in the range 80000000 to
FFFFFFFF hex.

OFF in all other cases.

Underflow Flag |UF ON when the result of subtracting a positive number from
a negative number is in the range 00000000 to
7TFFFFFFF hex.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.

When -L(411) is executed, the Error Flag will turn OFF.

If as a result of the subtraction, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

If the subtraction results in a borrow, the Carry Flag will turn ON.
If the result of subtracting a negative number from a positive number is nega-

tive (in the range 80000000 to FFFFFFFF hex), the Overflow Flag will turn
ON.

If the result of subtracting a positive number from a negative number is posi-
tive (in the range 00000000 to 7FFFFFFF hex), the Underflow Flag will turn
ON.

If as a result of the subtraction, the content of the leftmost bit of R+1 is 1, the
Negative Flag will turn ON.

When CIO 0.01 is ON in the following example, D1201 and D1200 will be sub-
tracted from D1001 and D1000 as 8-digit signed binary values and the result
will be output to D1501 and D1500.

0.01
— L

D1000

D1200

D1500

Symbol Math I nstructions Section 3-10

Examples If the result of the subtraction is a negative number (Mi<Su or Mi+1, Mi
<Su+l, Su), the result is output as the 2's complement and the Carry Flag
(CY) will turn ON to indicate that the result of the subtraction is negative. To
convert the 2's complement to the true number, an instruction which subtracts
the result from 0 is necessary using the Carry Flag (CY) as an execution con-
dition.

Note 2's Complement

A 2’s complement is the value obtained by subtracting each binary digit from 1
and adding one to the result. For example, the 2's complement for 1101 is cal-
culated as follows: 1111 (F hexadecimal) — 1101 (D hexadecimal) + 1 (1 hexa-
decimal) = 0011 (3 hexadecimal). The 2's complement for 3039 (hexadecimal)
is calculated as follows: FFFF (hexadecimal) — 3039 (hexadecimal) + 0001
(hexadecimal) — CFC7 (hexadecimal). Therefore, in case of 4-digit hexadeci-
mal value, the 2's complement can be calculated as follows: FFFF (hexadeci-
mal) — a (hexadecimal) + 0001 (hexadecimal) = b (hexadecimal). To obtain the
true number from the 2's complement b (hexadecimal): a (hexadecimal) =
10000 (hexadecimal) — b (hexadecimal). For example, to obtain the true hum-
ber from the 2's complement CFC7 (hexadecimal): 10000 (hexadecimal) —
CFC7 (hexadecimal) = 3039 (hexadecimal).

Example 1 Signed data Unsigned data
9 gggfﬁ:; - - 3 ;i) 6553? Note 1. Since the Negative Flag is ON, the result (FFFE hex) is a

negative value (2's complement) and is thus —2.

FFFE Hex —2 Note 1 65534 Note 2 2. Since the Carry Flag is OFF, the result (FFFE hex) is an
) unsigned positive value of 65534.
Negative Flag ON

Carry Flag OFF

Example 2 Signed data Unsigned data
_ FEFD Hex - . -3 65533 3. Since the Negative Flag is ON, the result (FFFE hex) is a
)FFFF Hex 9 -1 -) 65535 . ‘ .
- negative value (2's complement) and is thus -2.
FFFE Hex —2 Note 3 65534 Note 4 4. Since the Carry Flag is ON, the result (FFFE hex) is a
) negative value (2's complement) and becomes -2 when
Negative Flag ON converted to a true value.
Carry Flag OFF
Program Example 20F55A10 — BS8A360E3 = -97AE06D3.

In this example, the eight-digit binary value in CIO 211 and CIO 210 is sub-
tracted from the value in CIO 201 and CIO 200, and the result is output in
eight-digit binary to CIO 301 and CIO 300. If the result is negative, the instruc-
tion at (2) will be executed, and the actual result will then be output to CIO 301
and CIO 300.

355

Symbol Math I nstructions Section 3-10

0.00
I} RSET
302.00
-L (1)
200
210
300
S
17 -L 2
#00000000
300
300
cy
—{seT "_display
302.00

Subtraction at 1
Mi+1: CIO 201 Mi: CIO 200
[2lo[5] [slal1]0]

Su+1:ClIO 211 Su: CIO 210

- |Blslal3] [slolE[3]

CcY R+1: D301 R+1: D300
l6l8l5/1] [Flol2/D)

The Carry Flag (CY) is ON, so the result is subtracted from 0000 0000 to
obtain the actual number.

Subtraction at 2

lolofolo [o]olol0]

Su+1: ClIO 301 Su: CIO 300
- lelslsl1] [F9 20

CY R+1:CIO301 R+1:CIO 300

lol7[alel [olelDl3]

Final Subtraction Result

Mi+1: CIO 201 Mi: CIO 200
2]olF[s| [s]al1lo]

Su+1:ClO 211 Su: ClO210
- [Bls]s[1] [e]olEl3|

CY R+1:CIO301 R+1:CIO 300
L9l7[a[e] folelpl3]

The Carry Flag (CY) is turned ON, so the actual number is —-97AE06D3.
Because the content of CIO 301 and CIO 300 is negative, CY is used to turn
ON CIO 302.00 to indicate this.

356

Symbol Math I nstructions

Section 3-10

3-10-11 SIGNED BINARY SUBTRACT WITH CARRY: —C(412)

Purpose

Ladder Symbol

Subtracts 4-digit (single-word) hexadecimal data and/or constants with the
Carry Flag (CY).

- | -C(412)
Mi Mi: Minuend word
Su Su: Subtrahend word
R R: Result word
Variations
Variations Executed Each Cycle for ON Condition —-C(412)
Executed Once for Upward Differentiation @-C(412)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Applicable Program Areas

Block program areas

Step program areas Subroutines

Interrupt tasks

OK OK OK OK
Operand Specifications
Area Mi Su R
CIO Area ClO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area

TOO00O to T4095

Counter Area

C0000 to C4095

DM Area

DO to D32767

in binary

Indirect DM addresses

@ DO to @ D32767

in BCD

Indirect DM addresses

*DO0 to *D32767

Constants

#0000 to #FFFF (binary)
&0 to &65535 (unsigned decimal)
—32768 to 0 to 32767 (signed decimal)

using Index Registers

Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

—2048 to +2047 IR0 to —2048 to +2047 IR15
DRO to DR15, IR0 to IR15

JRO+(++) to IR15+(++)

~(= -)IRO to, (- -)IR15

357

Symbol Math I nstructions Section 3-10

Description —C(412) subtracts the binary values in Su and CY from Mi, and outputs the
result to R. When the result is negative, it is output to R as a 2's complement.

(Signed binary)
(Signed binary)

-
CY will turn
ONwhenthere [cy | [R | (signed binary)
is a borrow.
Flags
Name Label Operation
Error Flag ER OFF
Equals Flag = ON when the subtraction result is 0.
OFF in all other cases.
Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.
Overflow Flag OF ON when the result of subtracting a negative number and
CY from a positive number is in the range 8000 to FFFF
hex.
OFF in all other cases.
Underflow Flag |UF ON when the result of subtracting a positive number and
CY from a negative number is in the range 0000 to 7FFF
hex.
OFF in all other cases.
Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.
Precautions When —C(412) is executed, the Error Flag will turn OFF.
If as a result of the subtraction, the content of R is 0000 hex, the Equals Flag
will turn ON.
If the subtraction results in a borrow, the Carry Flag will turn ON.
If the result of subtracting a negative number and CY from a positive number
is negative (in the range 8000 to FFFF hex), the Overflow Flag will turn ON.
If the result of subtracting a positive number and CY from a negative number
is positive (in the range 0000 to 7FFF hex), the Underflow Flag will turn ON.
If as a result of the subtraction, the content of the leftmost bit of R is 1, the
Negative Flag will turn ON.
Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.
Examples When CIO 0.00 is ON in the following example, D110 and CY will be sub-
tracted from D100 as 4-digit signed binary values and the result will be output
to D120.
0.00
——c
D100
D110
D120

358

Symbol Math I nstructions Section 3-10

3-10-12 DOUBLE SIGNED BINARY SUBTRACT WITH CARRY: —CL(413)

Purpose Subtracts 8-digit (double-word) hexadecimal data and/or constants with the
Carry Flag (CY).

Ladder Symbol

— | —-CL(413)
Mi Mi: Minuend word
Su Su: Subtrahend word
R R: Result word
Variations
Variations Executed Each Cycle for ON Condition —CL(413)

Executed Once for Upward Differentiation @-CL(413)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Applicable Program Areas

Block program areas | Step program areas Subroutines Interrupt tasks

OK OK OK OK
Operand Specifications
Area Mi Su R

CIO Area CIO 0to CIO 6142

Work Area WO to W510

Holding Bit Area HO to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area TOO0O0O to T4094

Counter Area CO0000 to C4094

DM Area DO to D32766

Indirect DM addresses | @ DO to @ D32767

in binary

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants #00000000 to #FFFFFFFF (binary)
&0 to &4294967295 (unsigned deci-
mal)
—2147483648 to 2147483647 (signed
decimal)

Data Registers

Index Registers

Indirect addressing ,IRO to ,IR15

using Index Registers | _»04g to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
,—(=-)IRO to, —(- -)IR15

359

Symbol Math I nstructions

Section 3-10

Description

Flags

Precautions

Note

Examples

360

—CL(413) subtracts the binary values in Su and Su+1 and CY from Mi and
Mi+1, and outputs the result to R, R+1. When the result is negative, it is output
to R, R+1 as a 2's complement.

[mi+1 | [M| (Signed binary)
[su+1 || su | (Signed binary)
-
CY will turn
ON when there R+1 Signed binar
is a borrow. l ey l l l l R l (Sig Y)
Name Label Operation
Error Flag ER OFF
Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the results in a borrow.

OFF in all other cases.

Overflow Flag OF ON when the result of subtracting a negative number and
CY from a positive number is in the range 80000000 to

FFFFFFFF hex.
OFF in all other cases.

Underflow Flag |UF ON when the result of subtracting a positive number and
CY from a negative number is in the range 00000000 to

7FFFFFFF hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.

When —CL(413) is executed, the Error Flag will turn OFF.

If as a result of the subtraction, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

If the subtraction results in a borrow, the Carry Flag will turn ON.

If the result of subtracting a negative number and CY from a positive number

is negative (in the range 80000000 to FFFFFFFF hex), the Overflow Flag will
turn ON.

If the result of subtracting a positive number and CY from a negative number
is positive (in the range 00000000 to 7FFFFFFF hex), the Underflow Flag will
turn ON.

If as a result of the subtraction, the content of the leftmost bit of R+1 is 1, the
Negative Flag will turn ON.
To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

When CIO 0.01 is ON in the following example, D1101, D1100 and CY will be
subtracted from D1001 and D1000 as 8-digit signed binary values, and the
result will be output to D1201 and D1200.

0.01
—-cL
D1000
D1100:
D1200

Symbol Math I nstructions

Section 3-10

Note

If the result of the subtraction is a negative number (Mi<Su or Mi+1, Mi
<Su+l, Su), the result is output as a 2's complement. The Carry Flag (CY) will
turn ON. To convert the 2's complement to the true number, a program which
subtracts the result from 0 is necessary, as an input condition of the Carry
Flag (CY). The Carry Flag turning ON thus indicates that the result of the sub-
traction is negative.

2’'s Complement
A 2’s complement is the value obtained by subtracting each binary digit from 1
and adding one to the result.
Example: The 2’s complement for the binary number 1101 is as follows:
1111 (F hex) — 1101 (D hex) + 1 (1 hex) = 0011 (3 hex).
Example: The 2's complement for the 4-digit hexadecimal number 3039 is as
follows:
FFFF hex — 3039 hex + 0001 hex = CFC7 hex.
Accordingly, the 2's complement for the 4-digit hexadecimal value “a” is as fol-
lows:
FFFF hex — a hex + 0001 hex = b hex.
And to obtain the true number “a” hex from the 2's complement “b” hex:
a hex + 10000 hex — b hex.
Example: To obtain the true number from the 2’s complement CFC& hex:
10000 hex — CFC7 hex = 3039 hex.

3-10-13BCD SUBTRACT WITHOUT CARRY: —B(414)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Subtracts 4-digit (single-word) BCD data and/or constants.

- | -B(414)
Mi Mi: Minuend word
Su Su: Subtrahend word
R R: Result word
Variations Executed Each Cycle for ON Condition —-B(414)
Executed Once for Upward Differentiation @-B(414)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Area Mi Su R
CIO Area CIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area AO to A959 A448 to A959
Timer Area TOO0O to T4095
Counter Area C0000 to C4095
DM Area DO to D32767

361

Symbol Math I nstructions Section 3-10
Area Mi | Su | R
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants 0000 to 9999 (BCD)
Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

Description

Flags

Precautions

Examples

362

using Index Registers | _204g to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

~(=2)IRO to, (- -)IR15

—B(414) subtracts the BCD values in Su from Mi and outputs the result to R. If
the result of the subtraction is negative, the result is output as a 10’s comple-
ment.

(8CD)
- (BCD)
CY will turn
ON when there | cy | | R |(BCD)
is a borrow.
Name Label Operation
Error Flag ER ON when Mi is not BCD.
ON when Su is not BCD.
OFF in all other cases.
Equals Flag = ON when the result is 0.
OFF in all other cases.
Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.

If Mi and/or Su are not BCD, an error is generated and the Error Flag will turn
ON.

If as a result of the subtraction, the content of R is 0000 hex, the Equals Flag
will turn ON.

If an addition results in a borrow, the Carry Flag will turn ON.

When CIO 0.00 is ON in the following example, D110 will be subtracted from
D100 as 4-digit BCD values, and the result will be output to D120.

0.00
F——=8
D100
D110
D120

Symbol Math I nstructions Section 3-10

3-10-14 DOUBLE BCD SUBTRACT WITHOUT CARRY: -BL(415)

Purpose Subtracts 8-digit (double-word) BCD data and/or constants.
Ladder Symbol
— -BL(415)
Mi Mi: 1st minuend word
Su Su: 1st subtrahend word
R R: 1st result word
Variations
Variations Executed Each Cycle for ON Condition —-BL(415)

Executed Once for Upward Differentiation @-BL(415)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Applicable Program Areas

Block program areas | Step program areas Subroutines Interrupt tasks

OK OK OK OK
Operand Specifications
Area Mi Su R
CIO Area CIO 0to CIO 6142
Work Area WO to W510
Holding Bit Area HO to H510
Auxiliary Bit Area A0 to A958 A448 to A958
Timer Area TOO0O0O to T4094
Counter Area CO0000 to C4094
DM Area DO to D32766
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #00000000 to #99999999 (BCD) |
Data Registers ---
Index Registers
Indirect addressing ,IRO to ,IR15
using Index Registers | _7048 to +2047 ,IR0 to —2048 to +2047 IR15
DRO to DR15, IR0 to IR15
JIRO+(++) to ,IR15+(++)
—(-=-)IRO to, —(— -)IR15

Description —BL(415) subtracts the BCD values in Su and Su+1 from Mi and Mi+1 and
outputs the result to R, R+1. If the result is negative, it is output to R, R+1 as a
10’s complement.

[mi+ | [m | (BcD)

[sut1 | [su_| (BCD)
8mvv\crllletgrt?1ere| cv|[_Rra1 | R | @®cD)
is a borrow.

363

Symbol Math I nstructions Section 3-10
Flags
Name Label Operation
Error Flag ER ON when Mi and/or Mi +1 are not BCD.
ON when Su and/or Su +1 are not BCD.
OFF in all other cases.
Equals Flag = ON when the result is 0.
OFF in all other cases.
Carry Flag CcY ON when the subtraction results in a borrow.
OFF in all other cases.

Precautions

Examples

Note

Program Example

364

If Mi, Mi +1 and/or Su, Su +1 are not BCD, an error is generated and the Error
Flag will turn ON.

If as a result of the subtraction, the content of R, R +1 is 00000000 hex, the
Equals Flag will turn ON.

If an addition results in a borrow, the Carry Flag will turn ON.
When CIO 0.01 is ON in the following example, D1001 and D1000 will be sub-

tracted from D1101 and D1100 as 8-digit BCD values, and the result will be
output to D1201 and D1200.

0.01
——-8L

D1000

D1100

D1200

If the result of the subtraction is a negative humber (Mi<Su or Mi+1, Mi
<Su+1, Su), the result is output as a 10’'s complement. The Carry Flag (CY)
will turn ON. To convert the 10's complement to the true number, a program
which subtracts the result from 0 is necessary, as an input condition of the
Carry Flag (CY). The Carry Flag turning ON thus indicates that the result of
the subtraction is negative.

10’s Complement

A 10’s complement is the value obtained by subtracting each digit from 9 and
adding one to the result. For example, the 10’s complement for 7556 is calcu-
lated as follows: 9999 — 7556 + 1 = 2444, For a four digit number, the 10’s
complement of A is 9999 — A + 1 = B. To obtain the true number from the 10’s
complement B: A = 10000 — B. For example, to obtain the true number from
the 10’s complement 2444: 10000 — 2444 = 7556.

9,583,960 — 17,072,641 = —7,488,681.

In this example, the eight-digit BCD content of CIO 211 and CIO 210 is sub-
tracted from the content of CIO 201 and CIO 200, and the result is output in
eight-digit BCD to CIO 301 and CIO 300. The result is negative, so the
instruction at (2) will be executed, and the true value will then be output to
CIO 301 and CIO 300.

Symbol Math I nstructions Section 3-10

0.00
I} RSET
302.00
-BL (1)
200
210
300
S
17 -BL 2
#00000000
300
300
cy
—{sET " display
302.00

Subtraction at 1

Mi+1: CIO 201 Mi: CIO 200
lo]o[s]8] [3][e]6]0]

Su+1:CIO 211 Su: ClO 210
- lalrlol7] [2lel4]a]

09583960 + (100000000 — 17072641)
CY R+1:CIO 301 R+1:CIO 300
ol2ls[s] [a]s[a]o]

The Carry Flag (CY) is ON, so the result is subtracted from 0000 0000.

Subtraction at 2

lofofolo| [ofofo]0]

Su+1:ClO 301 Su: CIO 300
- lof2[s[a] [1]s[a]se]

00000000 + (100000000 — 92511319)
CY R+1:CIO 301 R+1:CIO 300
[*0748 '8l6/8]1]

Final Subtraction Result

Mi+1: CIO 201 Mi: CIO 200
2|olFls] [s]al1]0]

Su+1:CIO 211 Su: CIO 210
- lelslsl1] [F[e]2[D]

CcY R+1:CIO 301 R+1:CIO 300
lo|7]4[8] [s]e]8]1]

The Carry Flag (CY) will be turned ON, so the actual number is —7,488,681.
Because the content of CIO 301 and CIO 300 is negative, CY is used to turn
ON CIO 302.00 to indicate this.

365

Symbol Math I nstructions

Section 3-10

3-10-15BCD SUBTRACT WITH CARRY: —-BC(416)

Purpose Subtracts 4-digit (single-word) BCD data and/or constants with the Carry Flag
(CY).
Ladder Symbol
— | -BC(416)
Mi Mi: Minuend word
Su Su: Subtrahend word
R R: Result word
Variations
Variations Executed Each Cycle for ON Condition —-BC(416)
Executed Once for Upward Differentiation @-BC(416)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Applicable Program Areas

Block program areas

Step program areas Subroutines

Interrupt tasks

OK OK OK OK
Operand Specifications
Area Mi Su R
CIO Area ClO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959 A448 to A959

using Index Registers

Timer Area TO0O0O0 to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants #0000 to #9999 (BCD)
Data Registers DRO to DR15

Index Registers

Indirect addressing ,IRO to ,IR15

DRO to DR15, IR0 to IR15
JRO+(++) t0 IR15+(++)
—~(= IR0 to, —(- -)IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,

IR15

366

Symbol Math I nstructions

Section 3-10

Description

Flags

Precautions

Note

Examples

—BC(416) subtracts BCD values in Su and CY from Mi and outputs the result
to R. If the result is negative, it is output to R as a 2's complement.

(8CD)
(BCD)
-
CY will turn
ON when there | Cy | | R | (BCD)
is a borrow.
Name Label Operation
Error Flag ER ON when Mi is not BCD.
ON when Su is not BCD.
OFF in all other cases.
Equals Flag = ON when the result is 0.
OFF in all other cases.
Carry Flag CcY ON when the subtraction results in a borrow.
OFF in all other cases.

If Mi and/or Su are not BCD, an error is generated and the Error Flag will turn
ON.

If as a result of the subtraction, the content of R is 0000 hex, the Equals Flag
will turn ON.

If an addition results in a borrow, the Carry Flag will turn ON.
To clear the Carry Flay (CY), execute the Clear Carry (CLC(041)) instruction.

When CIO 0.00 is ON in the following example, D110 and CY will be sub-
tracted from D100 as 4-digit BCD values, and the result will be output to
D120.

0.00
F——--8C

D100

D110

D120

3-10-16 DOUBLE BCD SUBTRACT WITH CARRY: —-BCL(417)

Purpose

Ladder Symbol

Subtracts 8-digit (double-word) BCD data and/or constants with the Carry
Flag (CY).

— -BCL(417)
Mi Mi: 1st minuend word
Su Su: 1st subtrahend word
R R: 1st result word

367

Symbol Math I nstructions Section 3-10

Variations

Variations Executed Each Cycle for ON Condition —BCL(417)
Executed Once for Upward Differentiation @-BCL(417)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Applicable Program Areas

Block program areas | Step program areas Subroutines Interrupt tasks

OK OK OK OK
Operand Specifications
Area Mi Su R
CIO Area CIO0to CIO 6142
Work Area WO to W510
Holding Bit Area HO to H510
Auxiliary Bit Area AO to A958 A448 to A958
Timer Area TOO0OO to T4094
Counter Area C0000 to C4094
DM Area DO to D32766
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #00000000 to #99999999 (BCD) |
Data Registers ---
Index Registers
Indirect addressing ,IRO to ,IR15
using Index Registers | _»04g to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
,—(=-)IRO to, —(- -)IR15

Description —BCL(417)subtracts the BCD values in Su, Su+1, and CY from Mi and Mi+1
and outputs the result to R, R+1. If the result is negative, it is output to R, R+1
as a 10’s complement.

[mi+1 || ™ | cD)

[sut1 || su | ®cD)

-

CY will turn

ON when therel cy | L rer | [R | (BCD)
is a borrow.
Flags
Name Label Operation

Error Flag ER ON when Mi and/or Mi +1 are not BCD.
ON when Su and/or Su +1 are not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.

368

Symbol Math I nstructions

Section 3-10

Precautions

Note

Examples

Note

If Mi, Mi +1 and/or Su, Su +1 are not BCD, an error is generated and the Error
Flag will turn ON.

If as a result of the subtraction, the content of R, R +1 is 00000000 hex, the
Equals Flag will turn ON.

If an subtraction results in a borrow, the Carry Flag will turn ON.
To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

When CIO 0.01 is ON in the following example, D1101, D1100, and CY will be
subtracted from D1001 and D1000 as 8-digit BCD values, and the result will
be output to D1201 and D1200.

0.01

-BCL
D1000
D1100
D1200

If the result of the subtraction is a negative nhumber (Mi<Su or Mi+1, Mi
<Su+1, Su), the result is output as a 10’'s complement. The Carry Flag (CY)
will turn ON. To convert the 10's complement to the true number, a program
which subtracts the result from O is necessary, as an input condition of the
Carry Flag (CY). The Carry Flag turning ON thus indicates that the result of
the subtraction is negative.

10’s Complement

A 10’s complement is the value obtained by subtracting each digit from 9 and
adding one to the result. For example, the 10’s complement for 7556 is calcu-
lated as follows: 9999 — 7556 + 1 = 2444, For a four digit number, the 10’s
complement of A is 9999 — A + 1 = B. To obtain the true number from the 10’s
complement B: A = 10000 — B. For example, to obtain the true number from
the 10's complement 2444: 10000 — 2444 = 7556.

3-10-17 SIGNED BINARY MULTIPLY: *(420)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Multiplies 4-digit signed hexadecimal data and/or constants.

- | *420)
Md Md: Multiplicand word
Mr Mr: Multiplier word
R R: Result word
Variations Executed Each Cycle for ON Condition *(420)

Executed Once for Upward Differentiation @*(420)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Block program areas | Step program areas Subroutines Interrupt tasks
OK OK OK OK

369

Symbol Math I nstructions Section 3-10
Operand Specifications
Area md Mr R
CIO Area CIO 0to CIO 6143 ClO0to
CIO 6142
Work Area WO to W511 WO to W510
Holding Bit Area HO to H511 HO to H510
Auxiliary Bit Area AO to A959 A448 to A958
Timer Area TO00O to T4095 TO0O0O to T4094
Counter Area C0000 to C4095 C0000 to C4094
DM Area DO to D32767 DO to D32766
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #0000 to #FFFF (binary)

Description

Flags

Precautions

370

&0 to &65535 (unsigned decimal)
—32768 to 32767 (signed decimal)

Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

using Index Registers | _o048 to +2047 ,IR0 to —2048 to +2047 ,IR15

DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
—(= IR0 to, —(- -)IR15

*(420) multiplies the signed binary values in Md and Mr and outputs the result

to R, R+1.
(Signed binary)
X (Signed binary)

R+1 | R | (Signed binary)
Name Label Operation
Error Flag ER OFF
Equals Flag = ON when the result is 0.

OFF in all other cases.

ON when the leftmost bit of the result is 1.
OFF in all other cases.

Negative Flag N

When *(420) is executed, the Error Flag will turn OFF.

If as a result of the multiplication, the content of R is 0000 hex, the Equals
Flag will turn ON.

If as a result of the multiplication, the content of the leftmost bit of R+1 and R
is 1, the Negative Flag will turn ON.

Symbol Math I nstructions Section 3-10

Examples When CIO 0.00 is ON in the following example, D100 and D110 will be multi-
plied as 4-digit signed hexadecimal values and the result will be output to
D121 and D120.

0.00
——+
D100
D110
D120

3-10-18 DOUBLE SIGNED BINARY MULTIPLY: *L(421)

Purpose Multiplies 8-digit signed hexadecimal data and/or constants.

Ladder Symbol

- | *L(421)
Md Md: 1st multiplicand word
Mr Mr: 1st multiplier word
R R: 1st result word
Variations
Variations Executed Each Cycle for ON Condition *L(421)
Executed Once for Upward Differentiation @*L(421)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.
Applicable Program Areas
Block program areas | Step program areas Subroutines Interrupt tasks
OK OK OK OK
Operand Specifications
Area md Mr R
CIO Area CIO 0to CIO 6142 ClIO0to
CIO 6140
Work Area WO to W510 WO to W508
Holding Bit Area HO to H510 HO to H508
Auxiliary Bit Area A0 to A958 A448 to A956
Timer Area TO0O0O to T4094 TO00O to T4092
Counter Area C0000 to C4094 C0000 to C4092
DM Area DO to D32766 DO to D32764
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #00000000 to #FFFFFFFF (binary)
&0 to &4294967295 (unsigned deci-
mal)
—2147483648 to 0 to 2147483647
(signed decimal)
Data Registers ---

371

Symbol Math I nstructions

Section 3-10

Description

Flags

Precautions

Examples

Area

Md Mr | R

Index Registers

Indirect addressing
using Index Registers

IR0 to ,IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(=9)IR0 to, —(- -)IR15

*L(421) multiplies the signed binary values in Md and Md+1 and Mr and Mr+1
and outputs the result to R, R+1, R+2, and R+3.

Md + 1 Md (Signed binary)
X Mr+ 1 Mr (Signed binary)
R+3 R+2 R+1 R (Signed binary)
Name Label Operation
Error Flag ER OFF
Equals Flag = ON when the result is 0.

OFF in all other cases.

Negative Flag

ON when the leftmost bit of the result is 1.
OFF in all other cases.

When *L(421) is executed, the Error Flag will turn OFF.

If as a result of the multiplication, the content of R, R+1, R+2, R+3 is 0000
hex, the Equals Flag will turn ON.

If as a result of the multiplication, the content of the leftmost bit of R+1 is 1,
the Negative Flag will turn ON.

When CIO 0.01 is ON in the following example, D201, D200 and D211, D210
will be multiplied as 8-digit signed hexadecimal values and the result will be
output to D220 to D223.

0.01
i
D200
D210
D220

3-10-19 UNSIGNED BINARY MULTIPLY: *U(422)

Purpose

Ladder Symbol

372

Multiplies 4-digit unsigned hexadecimal data and/or constants.

—1 *U@422)

Md

Mr

R

Md: Multiplicand word

Mr: Multiplier word

R: Result word

Symbol Math I nstructions Section 3-10

Variations
Variations Executed Each Cycle for ON Condition *U(422)
Executed Once for Upward Differentiation @*U(422)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.
Applicable Program Areas
Block program areas | Step program areas Subroutines Interrupt tasks
OK OK OK OK
Operand Specifications
Area md Mr R
CIO Area CIO 0to CIO 6143 ClOO0to
CIO 6142
Work Area WO to W511 WO to W510
Holding Bit Area HO to H511 HO to H510
Auxiliary Bit Area AO to A959 A448 to A958
Timer Area TO00O to T4095 TO0O0O to T4094
Counter Area C0000 to C4095 C0000 to C4094
DM Area DO to D32767 DO to D32766
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #0000 to #FFFF (binary)
&0 to &65535 (unsigned decimal)
Data Registers DRO to DR15 -—-
Index Registers
Indirect addressing ,IRO to ,IR15
using Index Registers | _2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
,IRO+(++) to ,IR15+(++)
,—(=-)IRO to, —(- -)IR15

Description *U(420) multiplies the binary values in Md and Mr and outputs the result to R,

R+1.
(Unsigned binary)
X (Unsigned binary)

R+1 | R | (Unsigned binary)
Flags
Name Label Operation
Error Flag ER OFF
Equals Flag = ON when the result is 0.
OFF in all other cases.
Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.
Precautions When *U(422) is executed, the Error Flag will turn OFF.

373

Symbol Math I nstructions Section 3-10

If as a result of the multiplication, the content of R, R+1 is 0000 hex, the
Equals Flag will turn ON.

If as a result of the multiplication, the content of the leftmost bit of R+1 is 1,
the Negative Flag will turn ON.

Examples When CIO 0.00 is ON in the following example, D100 and D110 will be multi-
plied as 4-digit unsigned binary values and the result will be output to D121
and D120.

0.00
F—
D100
D110
D120

3-10-20 DOUBLE UNSIGNED BINARY MULTIPLY: *UL(423)

Purpose Multiplies 8-digit unsigned hexadecimal data and/or constants.

Ladder Symbol

— | *UL(423)
Md Md: 1st multiplicand word
Mr Mr: 1st multiplier word
R R: 1st result word
Variations
Variations Executed Each Cycle for ON Condition *UL(423)
Executed Once for Upward Differentiation @*UL(423)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Applicable Program Areas

Block program areas | Step program areas Subroutines Interrupt tasks

OK OK OK OK
Operand Specifications

Area Md Mr R

CIO Area CIO0to CIO 6142 CIO0to
CIO 6140

Work Area WO to W510 WO to W508
Holding Bit Area HO to H510 HO to H508
Auxiliary Bit Area AO to A958 A448 to A956
Timer Area TOO0O0O to T4094 TOO0O0O to T4092
Counter Area C0000 to C4094 C0000 to C4092
DM Area DO to D32766 DO to D32764

374

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants

#00000000 to #FFFFFFFF (binary)

&0 to &4294967295 (unsigned deci-
mal)

Data Registers

Symbol Math I nstructions Section 3-10
Area Md Mr | R
Index Registers
Indirect addressing ,IRO to ,IR15

using Index Registers

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(=9)IR0 to, —(- -)IR15

Description *UL(423) multiplies the unsigned binary values in Md and Md+1 and Mr and
Mr+1 and outputs the result to R to R+3.
Md + 1 Md (Unsigned binary)
X Mr+ 1 Mr (Unsigned binary)
R+3 R+2 R+1 R (Unsigned binary)
Flags
Name Label Operation
Error Flag ER OFF
Equals Flag = ON when the result is 0.

OFF in all other cases.

Negative Flag N

ON when the leftmost bit of the result is 1.
OFF in all other cases.

Precautions

When *UL(423) is executed, the Error Flag will turn OFF.

If as a result of the multiplication, the content of R to R+3 is 0000 hex, the
Equals Flag will turn ON.

If as a result of the multiplication, the content of the leftmost bit of R to R+3 is
1, the Negative Flag will turn ON.

Examples

When CIO 0.01 is ON in the following example, D201, 200, D211, and D210

will be multiplied as 8-digit unsigned binary values and the result will be output

to D220 to D223.

0.01
——+uL
D200
D210
D220

3-10-21 BCD MULTIPLY: *B(424)

Purpose

Ladder Symbol

*B(424)

Md

Mr

R

Multiplies 4-digit (single-word) BCD data and/or constants.

Md: Multiplicand word

Mr: Multiplier word

R: Result word

375

Symbol Math I nstructions Section 3-10

Variations
Variations Executed Each Cycle for ON Condition *B(424)
Executed Once for Upward Differentiation @*B(424)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.
Applicable Program Areas
Block program areas | Step program areas Subroutines Interrupt tasks
OK OK OK OK
Operand Specifications
Area md Mr R
CIO Area ClO 0to CIO 6143 ClOO0to
CIO 6142
Work Area WO to W511 WO to W510
Holding Bit Area HO to H511 HO to H510
Auxiliary Bit Area AO to A959 A448 to A958
Timer Area TO00O to T4095 TO0O0O to T4094
Counter Area C0000 to C4095 C0000 to C4094
DM Area DO to D32767 DO to D32766
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #0000 to #9999 (BCD)
Data Registers DRO to DR15 -—-
Index Registers
Indirect addressing ,IRO to ,IR15
using Index Registers | _2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
,IRO+(++) to ,IR15+(++)
,—(—=-)IRO to, -(— —)IR15

Description *B(424) multiplies the BCD content of Md and Mr and outputs the result to R,

R+1.
oD
: o

R+1 | R | (BCD)
Flags
Name Label Operation
Error Flag ER ON when Md is not BCD.
ON when Mr is not BCD.
OFF in all other cases.
Equals Flag = ON when the result is 0.
OFF in all other cases.
Precautions If Md and/or Mr are not BCD, an error will be generated and the Error Flag will

turn ON.

376

Symbol Math I nstructions

Section 3-10

Examples

If as a result of the multiplication, the content of R, R+1 is 0000 hex, the
Equals Flag will turn ON.

When CIO 0.00 is ON in the following example, D100 and D110 will be multi-
plied as 4-digit BCD values and the result will be output to D121 and D120.

0.00
F—1e
D100
D110
D120

3-10-22 DOUBLE BCD MULTIPLY: *BL(425)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Multiplies 8-digit (double-word) BCD data and/or constants.

— | *BL(425)
Md Md: 1st multiplicand word
Mr Mr: 1st multiplier word
R R: 1st result word
Variations Executed Each Cycle for ON Condition *BL(425)
Executed Once for Upward Differentiation @*BL(425)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Block program areas

Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R
ClO Area CIO 0to CIO 6142 ClO0to

ClO 6140

Work Area WO to W510 WO to W508
Holding Bit Area HO to H510 HO to H508
Auxiliary Bit Area A0 to A958 A448 to A956
Timer Area TOO0O0O to T4094 TO0O0O to T4092
Counter Area CO0000 to C4094 C0000 to C4092
DM Area DO to D32766 DO to D32764
Indirect DM addresses | @ DO to @ D32767
in binary

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants

#00000000 to #99999999 (BCD)

Data Registers

377

Symbol Math I nstructions Section 3-10
Area Md Mr | R
Index Registers
Indirect addressing ,IRO to ,IR15

Description

Flags

Precautions

Examples

using Index Registers | _o048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—~(= IR0 to, (- -)IR15

*BL(425) multiplies BCD values in Md and Md+1 and Mr and Mr+1 and out-
puts the result to R to R+3.

Md + 1 Md (BCD)
X Mr + 1 Mr (BCD)
R+3 R+2 R+1 R (BCD)
Name Label Operation
Error Flag ER ON when Md and/or Md+1 are not BCD.

ON when Mr and/or Mr +1 are not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0.
OFF in all other cases.

If Md, Md+1 and/or Mr, Mr+1 are not BCD, an error will be generated and the
Error Flag will turn ON.

If as a result of the multiplication, the content of R, R+1, R+2, R+3 is 0000
hex, the Equals Flag will turn ON.

When CIO 0.01 is ON in the following example, D201, D200, D211, and D210
will be multiplied as 8-digit unsigned BCD values and the result will be output
to D220 to D223.

0.01
——*8L
D200
D210
D220

3-10-23 SIGNED BINARY DIVIDE: /(430)

Purpose

Ladder Symbol

378

Divides 4-digit (single-word) signed hexadecimal data and/or constants.

- 1(430)
Dd Dd: Dividend word
Dr Dr: Divisor word
R R: Result word

Symbol Math I nstructions Section 3-10

Variations
Variations Executed Each Cycle for ON Condition /(430)
Executed Once for Upward Differentiation @/(430)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.
Applicable Program Areas
Block program areas | Step program areas Subroutines Interrupt tasks
OK OK OK OK
Operand Specifications
Area Dd Dr R
CIO Area CIO 0to CIO 6143 ClO0to
CIO 6142
Work Area WO to W511 WO to W510
Holding Bit Area HO to H511 HO to H510
Auxiliary Bit Area AO to A959 A448 to A958
Timer Area TO00O to T4095 TO0O0O to T4094
Counter Area C0000 to C4095 C0000 to C4094
DM Area DO to D32767 DO to D32766
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #0000 to #FFFF | #0001 to #FFFF | ---
(binary) (binary)
&0 to &65535 &1 to &65535
(unsigned deci- (unsigned deci-
mal) mal)
—32768to 0 to —32768t0-1,1to
32767 (signed 32767 (signed
decimal) decimal)
Data Registers DRO to DR15
Index Registers |
Indirect addressing ,IRO to ,IR15
using Index Registers | _2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
,—(—=-)IRO to, -(— —)IR15

Description /(430) divides the signed binary (16 bit) values in Dd by those in Dr and out-
puts the result to R, R+1. The quotient is placed in R and the remainder in
R+1.
“ (Signed binary)
. (Signed binary)
R+1 | R | (Signed binary)
Remainder Quotient

379

Symbol Math I nstructions Section 3-10
Flags
Name Label Operation
Error Flag ER ON when the result is 0.
OFF in all other cases.
Equals Flag = ON when as a result of the division, R is 0.
OFF in all other cases.
Negative Flag N ON when the leftmost bit of the R is 1.
OFF in all other cases.
Precautions When the content of Dr is 0, an error will be generated and the Error Flag will
turn ON.
If as a result of the division, the content of R is 0000 hex, the Equals Flag will
turn ON.
If as a result of the division, the content of the leftmost bit of R is 1, the Nega-
tive Flag will turn ON.
Examples When CIO 0.00 is ON in the following example, D100 will be divided by D110

as 4-digit signed binary values, the quotient will be output to D120, and the

remainder to D121.

0.00
—

D100

D110

D120

3-10-24 DOUBLE SIGNED BINARY DIVIDE: /L(431)

Purpose Divides 8-digit (double-word) signed hexadecimal data and/or constants.
Ladder Symbol
— | /L431)
Dd Dd: 1st dividend word
Dr Dr: 1st divisor word
R R: 1st result word
Variations
Variations Executed Each Cycle for ON Condition /L(431)

Executed Once for Upward Differentiation @/L(431)

Executed Once for Downward Differentiation | Not supported.

Immediate Refreshing Specification Not supported.

Applicable Program Areas

Block program areas

Step program areas Subroutines Interrupt tasks

OK OK OK OK
Operand Specifications
Area Dd Dr R
CIO Area CIO 0to CIO 6142 ClO0to
ClO 6140
Work Area WO to W510 WO to W508
Holding Bit Area HO to H510 HO to H508

380

Symbol Math I nstructions Section 3-10
Area Dd Dr R

Auxiliary Bit Area A0 to A958 A448 to A956
Timer Area TO0O0O to T4094 TO0O00 to T4092
Counter Area C0000 to C4094 C0000 to C4092
DM Area DO to D32766 DO to D32764
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #00000000 to #00000001 to

#FFFFFFFF #FFFFFFFF

(binary) (binary)

&0 to &l to

&4294967295 &4294967295

(unsigned deci-
mal)

(unsigned deci-
mal)

—2147483647t0 |-2147483648 to
2147483647 -1,1to
(signed decimal) |2147483647

(signed decimal)

Data Registers

Index Registers

,IRO to ,IR15

—2048 to +2047 ,IR0O to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(=-)IRO to, (= -)IR15

Indirect addressing
using Index Registers

Description /L(431) divides the signed binary values in Dd and Dd+1 by those in Dr and
Dr+1 and outputs the result to R, R+1, R+2, and R+3. The quotient is output
to R and R+1 and the remainder is output to R+2 and R+3.

Dd+1 Dd (Signed binary)
+ Dr+1 Dr (Signed binary)
R+3 R+2 R+1 R (Signed binary)
Remainder Quotient
Flags
Name Label Operation
Error Flag ER ON when the result is 0.
OFF in all other cases.
Equals Flag = ON when as a result of the division, R+1, R is 0.

OFF in all other cases.
ON when the leftmost bit of the R+1, R is 1.
OFF in all other cases.

Negative Flag N

Precautions When the remainder of the result, R+3, R+2 is 0,the Error Flag will turn ON.

If as a result of the division, the content of R+1, R is 00000000 hex, the
Equals Flag will turn ON.

If as a result of the division, the content of the leftmost bit of R+1, R is 1, the
Negative Flag will turn ON.

381

Symbol Math I nstructions Section 3-10

Examples When CIO 0.01 is ON in the following example, D201 and D200 will be
divided by D211 and D210 as 8-digit signed hexadecimal values, the quotient

will be output to D221 and D220, and the remainder will be output to D223

and D222.

0.01
—n
D200
D210
D220

3-10-25 UNSIGNED BINARY DIVIDE: /U(432)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

382

Divides 4-digit (single-word) unsigned hexadecimal data and/or constants.

| /U432
Dd Dd: Dividend word
Dr Dr: Divisor word
R R: Result word
Variations Executed Each Cycle for ON Condition 1U(432)
Executed Once for Upward Differentiation @/U(432)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Area Dd Dr R

CIO Area ClIO 0to CIO 6143 ClOO0to
ClO 6142

Work Area WO to W511 WO to W510
Holding Bit Area HO to H511 HO to H510
Auxiliary Bit Area AO to A959 A448 to A958
Timer Area TOO00O0 to T4095 TOO00O0 to T4094
Counter Area C0000 to C4095 C0000 to C4094
DM Area DO to D32767 DO to D32766
Indirect DM addresses | @ DO to @ D32767
in binary

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants

#0000 to #FFFF
(binary)

&0 to &65535
(unsigned deci-
mal)

#0001 to #FFFF
(binary)

&1 to &65535
(unsigned deci-
mal)

Data Registers

DRO to 15

Symbol Math I nstructions Section 3-10
Area Dd Dr | R
Index Registers
Indirect addressing ,IRO to ,IR15

Description

Flags

Precautions

Examples

using Index Registers | _o048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—~(= IR0 to, (- -)IR15

/U(432) divides the unsigned binary values in Dd by those in Dr and outputs
the quotient to R and the remainder to R+1.

(Unsigned binary)
+ (Unsigned binary)

R+1 | R | (Unsigned binary)
Remainder Quotient
Name Label Operation

Error Flag ER ON when the result is 0.
OFF in all other cases.

Equals Flag = ON when as a result of the division, R is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the R is 1.
OFF in all other cases.

If as a result of the division, the content of R+1 is 0, the Error Flag will turn
ON.

If as a result of the division, the content of R is 0000 hex, the Equals Flag will
turn ON.

If as a result of the division, the content of the leftmost bit of R is 1, the Nega-
tive Flag will turn ON.

When CIO 0.00 is ON in the following example, D100 will be divided by D110
as 4-digit unsigned binary values, the quotient will be output to D120, and the
remainder will be output to D121.

0.00
—w

D100

D110

D120

383

Symbol Math I nstructions Section 3-10

3-10-26 DOUBLE UNSIGNED BINARY DIVIDE: /UL(433)
Purpose Divides 8-digit (double-word) unsigned hexadecimal data and/or constants.

Ladder Symbol

— | /UL(433)
Dd Dd: 1st dividend word
Dr Dr: 1st divisor word
R R: 1st result word
Variations
Variations Executed Each Cycle for ON Condition /UL(433)

Executed Once for Upward Differentiation @/UL(433)
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Applicable Program Areas

Block program areas | Step program areas Subroutines Interrupt tasks

OK OK OK OK
Operand Specifications
Area Dd Dr R
CIO Area CIO 0to CIO 6142 ClIO0to
CIO 6140

Work Area WO to W510 WO to W508
Holding Bit Area HO to H510 HO to H508
Auxiliary Bit Area A0 to A958 A448 to A956
Timer Area TOO000 to T4094 TOO000 to T4092
Counter Area C0000 to C4094 C0000 to C4092
DM Area DO to D32766 DO to D32764
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #00000000 to #00000001 to

#FFFFFFFF #FFFFFFFF

(binary) (binary)

&0 to &1to

&4294967295 &4294967295

(unsigned deci- (unsigned deci-

mal) mal)
Data Registers ---
Index Registers
Indirect addressing ,IRO to ,IR15
using Index Registers | _2048 to +2047 ,IR0 to —2048 to +2047 ,IR15

DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(-=-)IRO to, —(— -)IR15

384

Symbol Math I nstructions

Section 3-10

Description /UL(433) divides the unsigned binary values in Dd and Dd+1 by those in Dr
and Dr+1 and outputs the quotient to R, R+1 and the remainder to R+2, and
R+3.
Dd+1 Dd (Unsigned binary)
- Dr+1 Dr (Unsigned binary)
R+3 R+2 R+1 R (Unsigned binary)
Remainder Quotient
Flags
Name Label Operation
Error Flag ER ON when the result is 0.
OFF in all other cases.
Equals Flag = ON when as a result of the division R+1, R is 0.

OFF in all other cases.

Negative Flag N

ON when the leftmost bit of the R+1, R is 1.
OFF in all other cases.

Precautions

When the content of Dr, Dr+1 is 0, the Error Flag will turn ON.

If as a result of the division, the content of R, R+1, is 0000 hex, the Equals

Flag will turn ON.

If as a result of the division, the content of the leftmost bit of R+1 is 1, the Neg-

ative Flag will turn ON.

Examples

When CIO 0.01 is ON in the following example, D201 and D200 will be

divided by D211 and D210 as 8-digit unsigned hexadecimal values, the quo-
tient will be output to D221 and D220, and the remainder will be output to

D223 and D222.

0.01
—uL

D200

D210

D220

3-10-27 BCD DIVIDE: /B(434)

Purpose

Ladder Symbol

Divides 4-digit (single-word) BCD data and/or constants.

— | /B(434)
Dd Dd: Dividend word
Dr Dr: Divisor word
R R: Result word
Variations
Variations Executed Each Cycle for ON Condition /B(434)
Executed Once for Upward Differentiation @/B(434)
Executed Once for Downward Differentiation | Not supported.

Immediate Refreshing Specification

Not supported.

385

Symbol Math I nstructions

Section 3-10

Applicable Program Areas

Operand Specifications

Description

Flags

Precautions

386

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Area Dd Dr R
CIO Area CIO 0to CIO 6143 ClO0to
ClO 6142

Work Area WO to W511 WO to W510
Holding Bit Area HO to H511 HO to H510
Auxiliary Bit Area AO to A959 A448 to A958
Timer Area TOO00O0 to T4095 TOO00O0 to T4094
Counter Area C0000 to C4095 C0000 to C4094
DM Area DO to D32767 DO to D32766
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #0000 to #9999 #0001 to #9999

(BCD) (BCD)
Data Registers DRO to DR15 -—-
Index Registers
Indirect addressing ,IRO to ,IR15
using Index Registers | _2048 to +2047 ,IR0 to —2048 to +2047 IR15

DRO to DR15, IR0 to IR15

JIRO+(++) to ,IR15+(++)

,—(-=-)IRO to, —(— -)IR15

/B(434) divides the BCD content of Dd by those of Dr and outputs the quotient
to R and the remainder to R+1.

o e
co)

R+1 | R | (8CD)
Remainder Quotient
Name Label Operation

Error Flag ER ON when Dd is not BCD.
ON when Dr is not BCD.
ON when the remainder is 0.
OFF in all other cases.

Equals Flag = ON when R is 0.
OFF in all other cases.

If Dd or Dr are not BCD or if the remainder (R+1) is 0, an error will be gener-
ated and the Error Flag will turn ON.

If as a result of the division, the content of R is 0000 hex, the Equals Flag will
turn ON.

If as a result of the division, the leftmost bit of R is 1, the Negative Flag will
turn ON.

Symbol Math I nstructions

Section 3-10

Examples

When CIO 0.00 is ON in the following example, D100 will be divided by D110
as 4-digit BCD values and the quotient will be output to D120 and the remain-

der to D121.
0.00
F——ie
D100
D110
D120

3-10-28 DOUBLE BCD DIVIDE: /BL(435)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Divides 8-digit (double-word) BCD data and/or constants.

— | /BL(435)
Dd Dd: 1st dividend word
Dr Dr: 1st divisor word
R R: 1st result word
Variations Executed Each Cycle for ON Condition /BL(435)

Executed Once for Upward Differentiation @/BL(435)

Executed Once for Downward Differentiation | Not supported.

Immediate Refreshing Specification Not supported.

Block program areas

Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R
CIO Area CIO 0to CIO 6142 ClOO0to

ClO 6140

Work Area WO to W510 WO to W508
Holding Bit Area HO to H510 HO to H508
Auxiliary Bit Area AO to A958 A448 to A956
Timer Area TOO00O0 to T4094 TOO00O0 to T4092
Counter Area C0000 to C4094 C0000 to C4092
DM Area DO to D32766 DO to D32764
Indirect DM addresses | @ DO to @ D32767
in binary

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants

#00000000 to #00000001 to ---
#99999999 (BCD) | #99999999 (BCD)

Data Registers

387

Symbol Math I nstructions

Section 3-10

Description

Flags

Precautions

Examples

388

Area Dd Dr | R
Index Registers
Indirect addressing ,IRO to ,IR15
using Index Registers | _5048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
—(=-)IRO to, (= -)IR15

/BL(435) divides BCD values in Dd and Dd+1 by those in Dr and Dr+1 and
outputs the quotient to R, R+1 and the remainder to R+2, R+3.

Dd +1 Dd (BCD)

- Dr+1 Dr (BCD)

R+3 R+2 R+1 R (BCD)

Remainder Quotient

Name Label Operation

Error Flag ER ON when Dd, Dd+1 is not BCD.
ON when Dr, Dr +1 is not BCD.

OFF in all other cases.

Equals Flag = ON when the result is 0.

OFF in all other cases.

If Dd, Dd+1 and/or Dr, Dr+1 are not BCD or the content of Dr, Dr+1 is 0, an
error will be generated and the Error Flag will turn ON.

If as a result of the division, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

When CIO 0.01 is ON in the following example, D201 and D200 will be
divided by D211 and D210 as 8-digit BCD values, the quotient will be output
to D221 and D220, and the remainder will be output to D223 and D222.

0.01
F——mL
D200
D210
D220

Conversion I nstructions

Section 3-11

3-11 Conversion Instructions

This section describes instructions used for data conversion.

3-11-1 BCD-TO-BINARY: BIN(023)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Instruction Mnemonic Function code Page
BCD-TO-BINARY BIN 023 389
DOUBLE BCD-TO-DOUBLE BINL 058 390
BINARY
BINARY-TO-BCD BCD 024 392
DOUBLE BINARY-TO-DOU- BCDL 059 393
BLE BCD
2'S COMPLEMENT NEG 160 395
DOUBLE 2'S COMPLEMENT | NEGL 161 397
16-BIT TO 32-BIT SIGNED SIGN 600 398
BINARY
DATA DECODER MLPX 076 400
DATA ENCODER DMPX 077 404
ASCIl CONVERT ASC 086 408
ASCII TO HEX HEX 162 411
COLUMN TO LINE LINE 063 415
LINE TO COLUMN COLM 064 417
SIGNED BCD-TO-BINARY BINS 470 419
DOUBLE SIGNED BCD-TO- BISL 472 422
BINARY
SIGNED BINARY-TO-BCD BCDS 471 424
DOUBLE SIGNED BINARY-TO- | BDSL 473 427
BCD
GRAY CODE CONVERSION |GRY 474 430

Converts BCD data to binary data.
| BIN(023)
S S: Source word
R R: Result word
Variations Executed Each Cycle for ON Condition BIN(023)
Executed Once for Upward Differentiation @BIN(023)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK OK OK OK
Area S R

ClO Area ClO 0to CIO 6143

Work Area WO to W511

Holding Bit Area HO to H511

389

Conversion I nstructions Section 3-11
Area S R
Auxiliary Bit Area A0 to A959 A448 to A959

Description

Flags

Example

Timer Area TO0O0O0 to T4095
Counter Area CO0000 to C4095
DM Area DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary

Indirect DM addresses | *DO0 to *D32767
in BCD

Constants

Data Registers DRO to DR15
Index Registers

Indirect addressing ,IRO to ,IR15

using Index Registers
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
,—(—-)IRO to, -(— —)IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15

BIN(023) converts the BCD data in S to binary data and writes the result to R.

s| (BCcD) | —R| (BIN) |
Name Label Operation
Error Flag ER ON if the content of S is not BCD.
OFF in all other cases.
Equals Flag = ON if the result is 0000.
OFF in all other cases.
Negative Flag N OFF

The following diagram shows an example BCD-to-binary conversion.

15 1211 87 43 O 15 1211 87 43 0O
s{aiaisio2|—RoiD{7c]|
%103 x102 %101 x10° x163% x162x161x16°

3-11-2 DOUBLE BCD-TO-DOUBLE BINARY: BINL(058)

Purpose

Ladder Symbol

Variations

390

Converts 8-digit BCD data to 8-digit hexadecimal (32-bit binary) data.

— | BINL(058)
S S: First source word
R R: First result word
Variations Executed Each Cycle for ON Condition BINL(058)
Executed Once for Upward Differentiation @BINL(058)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Conversion I nstructions

Section 3-11

Applicable Program Areas

Operand Specifications

Description

Flags

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Area S R
CIO Area CIO 0to CIO 6142
Work Area WO to W510
Holding Bit Area HO to H510
Auxiliary Bit Area A0 to A958 A448 to A958
Timer Area TOO0OO to T4094
Counter Area CO0000 to C4094
DM Area DO to D32766
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants
Data Registers
Index Registers
Indirect addressing ,IRO to ,IR15

using Index Registers

—2048 to +2047 ,IR0O to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
—(=-)IR0 to, -(- -)IR15

BINL(058) converts the 8-digit BCD data in S and S+1 to 8-digit hexadecimal
(32-bit binary) data and writes the result to R and R+1.

S+1 S

R+1 R

L ®cp) | BcD) | —=[@N) | @IN) |

Name Label Operation
Error Flag ER ON if the contents of S+1, S are not BCD.
OFF in all other cases.
Equals Flag = ON if the result is 0.

OFF in all other cases.

Negative Flag N

OFF

391

Conversion I nstructions Section 3-11

Examples The following diagram shows an example of 8-digit BCD-to-binary conversion.
S+1 8 R+1 R
[ofol2ioloioisio] [ofoioias|oinizia]
x107x10°x10°x10*x10°%10°x10*x10° x16'x16°x16°x16'%16° x16°x16'x16°

When CIO 0.00 is ON in the following example, the 8-digit BCD value in
ClIO 201 and CIO 200 is converted to hexadecimal and stored in D1001 and

D1000.
0.00
F——BinL
200
D1000
S+1: CIO 201 S: CIO 200
‘ 0 ‘ 0 ‘ 2 ‘ 0 ‘ ‘ 0 ‘ 0 ‘ 5 ‘ 0 ‘H 200050=3X16%*+13X162+7X161+2X16°

x107 x10% x10° x10* x10% x102 x10! x10°

L

ojojofsf[]ofp|7]2]
x167 x16% x16° x16% x163 x162 x161 x16°
R+1: D1001 R: D1000

3-11-3 BINARY-TO-BCD: BCD(024)

Purpose Converts a word of binary data to a word of BCD data.
Ladder Symbol
— 1 BCD(024)
S S: Source word
R R: Result word
Variations
Variations Executed Each Cycle for ON Condition BCD(024)

Executed Once for Upward Differentiation @BCD(024)

Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas | Step program areas | Subroutines | Interrupt tasks
OK OK OK OK

Operands S: Source Word
S must be between 0000 and 270F hexadecimal (0000 and 9999 decimal).

Operand Specifications

Area S | R
CIO Area CIO0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area AO to A959 A448 to A959

392

Conversion I nstructions Section 3-11

Area S R

Timer Area TOO0OO to T4095

Counter Area CO0000 to C4095

DM Area DO to D32767

Indirect DM addresses | @ DO to @ D32767

in binary

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants

Data Registers DRO to DR15

Index Registers

Indirect addressing ,IRO to ,IR15

using Index Registers | _»04g to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
,—(-=-)IRO to, —(- -)IR15

Description BCD(024) converts the binary data in S to BCD data and writes the result to
R.

s (BIN) | —R]| (BCD) |

Flags

Name Label Operation
Error Flag ER ON if the content of S exceeds 270F (9999 decimal).
OFF in all other cases.
Equals Flag = ON if the result is 0000.
OFF in all other cases.

Precautions The content of S must not exceed 270F (9999 decimal).

Example The following diagram shows an example BCD-to-binary conversion.
15 1211 87 43 0O 151211 87 43 O
1 oieic|—Rlalaiaia]
x16% x16% x16 x16° x10°® x10% x10* x10°

3-11-4 DOUBLE BINARY-TO-DOUBLE BCD: BCDL(059)

Purpose Converts 8-digit hexadecimal (32-bit binary) data to 8-digit BCD data.
Ladder Symbol

— | BCDL(059)
S S: First source word
R R: First result word
Variations
Variations Executed Each Cycle for ON Condition BCDL(059)

Executed Once for Upward Differentiation @BCDL(059)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

393

Conversion I nstructions

Section 3-11

Applicable Program Areas

Operands

Operand Specifications

Description

Flags

Precautions

394

Block program areas

Step program areas | Subroutines | Interrupt tasks

OK

OK OK OK

S: First Source Word

The content of S+1 and S must be between 0000 0000 and 05F5 EOFF hexa-
decimal (0000 0000 and 9999 9999 decimal).

Area S | R
CIO Area CIO 0to CIO 6142
Work Area WO to W510
Holding Bit Area HO to H510
Auxiliary Bit Area AO to A958 A448 to A958
Timer Area TOOO0O to T4094
Counter Area C0000 to C4094
DM Area DO to D32766

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses
in BCD

*DO to *D32767

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

,IRO to ,IR15

—2048 to +2047 ,IR0O to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—~(=-)IRO to, —(- -)IR15

BCDL(059) converts the 8-digit hexadecimal (32-bit binary) data in S and S+1
to 8-digit BCD data and writes the result to R and R+1.

S+1 S

R+1 R

[cp) | @cp) | —[BN [BN |

Name Label Operation
Error Flag ER ON if the contents of S and S+1 exceed 05F5 EOFF
(9999 9999 decimal).
OFF in all other cases.
Equals Flag = ON if the result is 0.
OFF in all other cases.

The content of S+1 and S must not exceed 05F5 EOFF (9999 9999 decimal).

Conversion I nstructions

Section 3-11

Examples

The following diagram shows an example of 8-digit BCD-to-binary conversion.

S+1 s R+1 R
[oToleib|ateiola] [oj2iofa|tieiaio]
x16'%16°x16°%16" x16*x16°x16'x16° x107x10°x10°x10"%10°x10%x10'x10°

When CIO 0.00 is ON in the following example, the hexadecimal value in
CIO 201 and CIO 200 is converted to a BCD value and stored in D1001 and
D1000.

0.00
F——scoL
200
D1000
S+1: CIO 201 S: CIO 200
mes| o | o | 2 | o | [3 [2 o A |iss
x167 x168 x16° x16% x163 x162 x16t x16°
2X16°+13X16%+3X163+2X16%+10=2961930
R+1: D1001 @ R: D1000
mes| o | 2 | 9 | 6 | 1 | 9 | 3 | o Juiss
x107 x108 x10° x10% x103 x102 x10?! x100

3-11-5 2’S COMPLEMENT: NEG(160)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Calculates the 2's complement of a word of hexadecimal data.

| NEG(160)
S S: Source word
R R: Result word
Variations Executed Each Cycle for ON Condition NEG(160)

Executed Once for Upward Differentiation @NEG(160)
Executed Once for Downward Differentiation | Not supported

Immediate Refreshing Specification Not supported

Block program areas | Step program areas | Subroutines | Interrupt tasks

OK OK OK OK
Area S R

ClO Area ClIO 0to CIO 6143

Work Area WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area TO0O0O to T4095

Counter Area CO0000 to C4095

DM Area DO to D32767

395

Conversion I nstructions

Section 3-11

Description

Note
Flags

Note
Example

396

Area S R
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #0000 to #FFFF (binary) [--
Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

using Index Registers | _2048 to +2047 ,IR0 to —2048 to +2047 ,IR15

DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)

~(=-)IRO to, «(- -)IR15

NEG(160) calculates the 2’'s complement of S and writes the result to R. The
2's complement calculation basically reverses the status of the bits in S and
adds 1.

2's complement
(Complement + 1)

S) (R)

This operation (reversing the status of the bits and adding 1) is equivalent to
subtracting the content of S from 0000.

Name Label Operation
Error Flag ER OFF
Equals Flag = ON if the result is 0000.

OFF in all other cases.

Negative Flag N ON if bit 15 of the result is ON.

OFF in all other cases.

The result for 8000 hex will be 8000 hex.

When CIO 0.00 is ON in the following example, NEG(160) calculates the 2’s
complement of the content of D100 and writes the result to D200.

0.00
F——-IneG
D100
D200
Actual Equivalent
calculation subtraction
p1oo| 1 {2 {3i4] [oioflolo]
l Reverse bit status
|E§D§C§B|=_)|1§2§3§4|
l Add 1
D200 EiDicicl] [Einicic]

Conversion I nstructions

Section 3-11

3-11-6 DOUBLE 2’S COMPLEMENT: NEGL(161)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description

Note

Calculates the 2's complement of two words of hexadecimal data.

— | NEGL(161)
S S: First source word
R R: First result word
Variations Executed Each Cycle for ON Condition NEGL(161)
Executed Once for Upward Differentiation @NEGL(161)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas

Step program areas | Subroutines | Interrupt tasks

OK OK OK OK
Area S R

CIO Area CIO 0to CIO 6142

Work Area WO to W510

Holding Bit Area HO to H510

Auxiliary Bit Area AO to A958 A448 to A958

Timer Area TOO0OO to T4094

Counter Area CO0000 to C4094

DM Area DO to D32766

Indirect DM addresses | @ DO to @ D32767

in binary

Indirect DM addresses
in BCD

*DO to *D32767

using Index Registers

Constants #00000000 to #FFFFFFFF | ---
(binary)

Data Registers ---

Index Registers

Indirect addressing ,IRO to ,IR15

—2048 to +2047 IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to IR15+(++)

~(=-)IR0 to, «(- -)IR15

NEGL(161) calculates the 2’s complement of S+1 and S and writes the result
to R+1 and R. The 2's complement calculation basically reverses the status of
the bits in S+1 and S and adds 1.

2's complement
(Complement + 1)

(5+1,9)

(R+1, R)

This operation (reversing the status of the bits and adding 1) is equivalent to
subtracting the content of S+1 and S from 0000 0000.

397

Conversion I nstructions

Section 3-11

Flags
Name Label Operation
Error Flag ER OFF
Equals Flag = ON if the result is 0000 0000.
OFF in all other cases.
Negative Flag N ON if bit 15 of R+1 is ON.
OFF in all other cases.
Note The result for 8000 hex will be 8000 hex.
Example When CIO 0.01 is ON in the following example, NEGL(161) calculates the 2’s
complement of the content of D1001 and D1000 and writes the result to
D2001 and D2000.
0.01
F——neaGL
D1000
D2000
Actual Equivalent
calculation subtraction
D100L| 1 { 2 i 0| 4| DW0O0O[s [6i7 |56 loioioio]|][oioioio]
I Reverse bit status
lEip ci8| [Alois 7]- _)|1§2§3§4||5§8§7§a|
I Add 1
D2001 | E i Dic | B| D2ooolAloisa]| leEipic B||[aioisis]|
3-11-7 16-BIT TO 32-BIT SIGNED BINARY: SIGN(600)
Purpose Expands a 16-bit signed binary value to its 32-bit equivalent.
Ladder Symbol
| SIGN(600)
S S: Source word
R R: First result word
Variations
Variations Executed Each Cycle for ON Condition SIGN(600)
Executed Once for Upward Differentiation @SIGN(600)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Operand Specifications

398

Block program areas

Step program areas | Subroutines | Interrupt tasks

OK OK OK OK
Area S R
CIO Area CIO 0to CIO 6143 CIO 0to CIO 6142
Work Area WO to W511 WO to W510
Holding Bit Area HO to H511 HO to H510
Auxiliary Bit Area AO to A959 A448 to A958
Timer Area TOO000 to T4095 TOO000 to T4094

Conversion I nstructions

Section 3-11

using Index Registers

Area S R
Counter Area C0000 to C4095 C0000 to C4094
DM Area DO to D32767 DO to D32766
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants #0000 to #FFFF (binary) ---
Data Registers DRO to DR15 -—-
Index Registers
Indirect addressing ,IRO to ,IR15

—2048 to +2047 IR0 to —2048 to +2047 IR15
DRO to DR15, IR0 to IR15

JRO+(++) to IR15+(++)

—(= -)IRO to, (- -)IR15

Note

Description

R and R+1 must be in the same data area.

SIGN(600) converts the 16-bit signed binary number in S to its 32-bit signed

binary equivalent and writes the result in R+1 and R.

The conversion is accomplished by copying the content of S to R and writing
FFFF to R+1 if bit 15 of S is 1 or writing 0000 to R+1 if bit 15 of S is 0.

Source word (S)

If bit 15 of S is 1, FFFF is transferred to R+1.
If bit 15 of S is 0, 0000 is transferred to R+1.

t
iyojofojojojofojofojofojofojoy|o

The content of S is
transferred "asis"to R.

2" result word (R+1)

1% result word (R)

1112y)22j1f2j2)1y2j1f1j1

110j0f0j0j0OjoOfOJjOfOjO|JO]JOfO|jO}|O

Operation

OFF

ON if the result is 0000 0000.
OFF in all other cases.

ON if bit 15 of R+1 is ON.
OFF in all other cases.

Flags
Name Label
Error Flag ER
Equals Flag =
Negative Flag N
Example

When CIO 0.00 is ON in the following example, SIGN(600) converts the 16-bit

signed binary content of D100 (#8000 = —32,768 decimal) to its 32-bit equiva-
lent (#FFFF 8000 = —32,768 decimal) and writes that result to D201 and

D200.
5 0
0.00 [1]oioioioioioioioioioioioioioin]
F——sien S: D100
D100 Example: 8000 Hex
15 015 0]
L r [[F T F [& 0o [o | 0|
R+1: D201 R: D200

399

Conversion I nstructions

Section 3-11

3-11-8 DATA DECODER: MLPX(076)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

Operand Specifications

400

Reads the numerical value in the specified digit (or byte) in the source word,
turns ON the corresponding bit in the result word (or 16-word range), and
turns OFF all other bits in the result word (or 16-word range).

— | MLPX(076)
S S: Source word
C C: Control word
R R: First result word
Variations Executed Each Cycle for ON Condition MLPX(076)

Executed Once for Upward Differentiation @MLPX(076)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas | Step program areas | Subroutines | Interrupt tasks
OK OK OK OK

S: Source Word

The data in the source word indicates the location of the bit(s) that will be
turned ON.

C: Control Word

The control word specifies whether MLPX(076) will perform a 4-to-16 bit con-
version or an 8-to-256 bit conversion, the number of digits or bytes to be con-
verted, and the starting digit or byte.

Digitnumber: 3 2 1 0

0
| Specifies the first digit/byte to be converted

4-t0-16: 0 to 3 (digit O to 3)
8-t0-256: 0 or 1 (byte O or 1)

——————=» Number of digits/bytes to be converted
4-t0-16: 0 to 3 (1 to 4 digits)
8-t0-256: 0 or 1 (1 or 2 bytes)

Conversion process
0: 4-to-16 bits (digit to word)
1: 8-t0-256 bits (byte to 16-word range)

R: First result word

There can be anywhere from 1 to 32 result words, depending upon the type of
conversion process and number of digits/bytes being converted. The result
words must be in the same data area.

Area S | C | R
CIO Area CIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area AO to A959 A448 to A959

Conversion I nstructions

Section 3-11
Area S C
Timer Area TOO0OO to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary

Indirect DM addresses

*DO to *D32767

in BCD
Constants - | —

Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

using Index Registers | _o048 to +2047 ,IR0 to —2048 to +2047 ,IR15

DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)

—~(=-)IRO to, —(- -)IR15

MLPX(076) can perform 4-to-16 bit or 8-t0-256 bit conversions. Set the left-
most digit of C to 0 to specify 4-to-16 bit conversion and set it to 1 to specify 8-
to-256 bit conversion.

4-t0-16 bit Conversion

When the leftmost digit of C is 0, MLPX(076) takes the value of the specified
digit in S (0 to F) and turns ON the corresponding bit in the result word. All
other bits in the result word will be turned OFF. Up to four digits can be con-
verted.

c[o | [1§ n]

£ =1 (Convert 2 digits.) |

!
f—_\
_n
sl p T om |

| n=2 (Start with third digit.)

4-t0-16 bit decoding
(Bit m of R is turned ON.)

15 P m
R —
R+1[

When two or more digits are being converted, MLPX(076) will read the digits
in S from right to left and will wrap around to the rightmost digit after the left-
most digit, if necessary.

The following diagram shows some example values for C and the 4-to-16 bit
conversions that they produce.

Description
C: #0010
15 12.11 87 4’3
S| H H
L 15
R
R+1

C: #0030 C: #0031
0 15 12‘11 8 7 4‘3 8 15 12.11 87 4‘3 0
\ s| é | | | s| | |
— | — |
0 L15 0 15 0
R —R
+1 —R+1
+2 L—R+2
L—R+3 L R+3

401

Conversion I nstructions

Section 3-11

Flags

402

8-t0-256 bit Conversion

When the leftmost digit of C is 1, MLPX(076) takes the value of the specified
byte in S (00 to FF) and turns ON the corresponding bit in the range of 16
result words. All other bits in the result words will be turned OFF. Up to two
bytes can be converted.

Cl 1 i | | : n |
£=1 (Convert 2 bytes.) |

| ;

1 n=1 (Start with second byte.)
s| m P |
R
8-t0-256 bit decoding
(Bit m of R to R+15 iIs turned ON.)
15 0
15 m
R+1 — 16
: 230 : 224
R+14{255 240
R+15
R+16
R+17
P
R+30 —]
R+31]

When two bytes are being converted, MLPX(076) will read the bytes in S from
right to left and will wrap around to the rightmost byte if the leftmost byte
(byte 1) has been specified as the starting byte.

The following diagram shows some example values for C and the 8-t0-256 bit
conversions that they produce.

C: #1010 C: #1011
15 1211 87 48 8 15 1211 87 48 8
s| Digit1 | Digito | s/ Digit1 | Digito |
.15 8 .15 8
D D
LD+15 [D+15
D+18 D+18
| D+31 | D+31
Name Label Operation
Error Flag ER ON if C is not within the specified ranges.
OFF in all other cases.

Conversion I nstructions

Section 3-11

Examples
0.00
p——qmrrx
s 200
C #0021
R D100
0.01
F——mLpx
s 1000
C #1011
r| D1000

4-t0-16 bit Conversion

When CIO 0.00 is ON in the following example, MLPX(076) will convert 3 dig-
its in CIO 200 beginning the second digit, as indicated by C (#0021). The cor-
responding bits in D100 to D102 will be turned ON.

15 12 1 8 7 48 0 Bits 0 to 3: Starting digit (Digit 1)
c#l o i o i o2 i o1 | , o .
T Bits 4 to 7: Number of digits (3 digits)
Digits " s : 2 1 \ 0
S: 200 | F i A [6 | |
| |

1514131211109’876 548210

R: D100 Digit 1 contains 6, so bit 6 is turned ON.
D101 Digit 2 contains A, so bit 10 is turned ON.
D102 Digit 3 contains F, so bit 15 is turned ON.

8-t0-256 bit Conversion

When CIO 0.01 is ON in the following example, MLPX(076) will convert the 2
bytes in S beginning with byte 1 (the leftmost byte), as indicated by C (#1011).
The corresponding bits in D1000 to D1015 and D1016 to D1031 will be turned
ON.

Bits 0 to 3: Starting byte (Byte 1)

15 12 11 8 7 48 0

Bits 4 to 7: Number of bytes (2 bytes)

4

scio00f 2 7 b 1 i A
— I

151413121110 0 8 7 6 5 4 8 2 1 0 _

R: D1000
D1001
D1002
D1003

Byte 1 contains 2D, so bit 13 (D)
of R+2 is turned ON.

D1015
D1016

D1017
D1018

Byte 0 contains 1A, so bit 10 (A)
of R+1 is turned ON.

D1031

403

Conversion I nstructions Section 3-11

3-11-9 DATA ENCODER: DMPX(077)

Purpose FInds the location of the first or last ON bit within the source word (or 16-word
range), and writes that value to the specified digit (or byte) in the result word.

Ladder Symbol

— | DMPX(077)
S S: First source word
R R: Result word
C C: Control word
Variations
Variations Executed Each Cycle for ON Condition DMPX(077)

Executed Once for Upward Differentiation @DMPX(077)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas | Step program areas | Subroutines | Interrupt tasks
OK OK OK OK

Operands S: First Source Word

There can be anywhere from 1 to 32 source words, depending upon the type
of conversion process and number of digits/bytes being converted. The
source words must be in the same data area.

R: Result Word

The locations of the bits that were ON in the source word(s) are written to the
digits/bytes in R starting with the specified first digit/byte.

C: Control Word

The control word specifies whether DMPX(077) will perform a 16-to-4 bit con-
version or an 256-to0-8 bit conversion, whether the leftmost or rightmost ON bit
will be encoded, the number of digits or bytes that will be converted, and the
starting digit or byte where the results will be written.

Digitnumber: 3 2 1 0

‘—> Specifies the first digit/byte to receive converted data.
16-to-4: 0 to 3 (digit 0 to 3)
256-t0-8: 0 or 1 (byte O or 1)

L———» Number of digits/bytes to be converted
16-to-4: 0 to 3 (1 to 4 digits)
256-t0-8: 0 or 1 (1 or 2 bytes)

——— Bitto encode
0: Leftmost bit (highest bit address)
1: Rightmost bit (lowest bit address)

& Conversion process
0: 16-to-4 bits (word to digit)
1: 256-to-8 bits (16-word range to byte)

404

Conversion I nstructions Section 3-11
Operand Specifications
Area S R | C
CIO Area CIO0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959 A448 to A959 A0 to A959
Timer Area TOO0O to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary
Indirect DM addresses | *DO0 to *D32767
in BCD
Constants -—- Specified values
only
Data Registers --- DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15
using Index Registers | _2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15
JIRO+(++) to ,IR15+(++)
,—(-=-)IRO to, —(— -)IR15

Description

DMPX(077) can perform 16-to-4 bit or 256-to-8 bit conversions. Set the left-
most digit of C to 0 to specify 16-to-4 bit conversion and set it to 1 to specify
256-t0-8 bit conversion.

16-to-4 bit Conversion

When the fourth (leftmost) digit of C is 0, DMPX(077) finds the locations of the
leftmost or rightmost ON bits in up to 4 source words and writes these loca-
tions to R beginning with the specified digit. (Set the third digit of C to O to find
the leftmost ON bits or 1 to find the rightmost ON bits.)

cl o i o [1 | n |

FInds leftmost bit
(Highest bit address)
I |

[15 p : 0 £=1 (Convert

m_
s H] 2 words.)
S+1 i

16-to-4 bit decoding
(Location of leftmost bit (m)

is written to R.) Leftmost bit

| n=2 (Start with digit 2.)

When two or more digits are being converted, DMPX(077) will write the values
to the digits in R from right to left and will wrap around to the rightmost digit
after the leftmost digit, if necessary.

The following diagram shows some example values for C and the 16-to-4 bit
conversions that they produce.

405

Conversion I nstructions Section 3-11

C: #0011 C: #0030 C: #0013
15 0 15 0 15

0
K]) 8
8+1 S+1 S+1]
-‘ S+2
8+3 |
15 1211t 37 43 0 15 v+ 1211 37 43,70

R| Digit 3/Digit 2 [Digit 1 | Digit 0| R | Digit 3| Digit 2| Digit 1} Digit 0|

—

15 r+12 11 87 48 0
R|Digit 3 Digit 2 [Digit 1 ; Digit 0

C: #0032
15 0

S
S+1
8+2]
8+3 M

15 1211|87’43 0

R| Digit 3] Digit 2| Digit 1| Digit 0

256-t0-8 bit Conversion

When the fourth (leftmost) digit of C is 1, DMPX(077) finds the locations of the
leftmost (highest bit address) or rightmost (lowest bit address) ON bits in one
or two 16-word ranges of source words. The locations of these bits are written
to R beginning with the specified byte. (Set the third digit of C to 0 to find the
leftmost ON bits or 1 to find the rightmost ON bits.)

cl o T T T]
£ =0 (Convert one 16-word range.)

15 0
o 18 Leftmost Rightmost
S+ bit bit
: |es m : 224
s+14 255ﬂ|s—1;l_\ 249
s+15
Finds leftmost bit
(Highest bit address)

256-t0-8 bit decoding
(The location of the leftmost bit in the
16-word range (m) is written to R.)

l_l n=1 (Start with byte 1.)

When two bytes are being converted, DMPX(077) will write the values to the
bytes in R from right to left and will wrap around to the rightmost byte if the
leftmost byte (byte 1) has been specified as the starting byte.

406

Conversion I nstructions

Section 3-11

Flags

Precautions

Examples

0.00
] OMPX
S 200
Rl D1000
c| #0021

The following diagram shows some example values for C and the 256-to-8 bit
conversions that they produce.

C: #1010 C: #1011
15 0 15
s 8
8+15 8+15
S$+10 S+15
8+31 8+31
15 \ 37 [0 15 \ 87 l 0
s| Digit1 Digit0 | s| Digt1 | Digito |
Name Label Operation
Error Flag ER ON if any of the source words contains 0000 hex (i.e., no

bit to encode).
ON if C is not within the specified ranges.
OFF in all other cases.

If the conversion data contains 0000 hex, but other data is to be encoded,
separate the conversion by using more than one DMPX(077) instructions.

DMPX(077) DO D100 #0300
DMPX(077) DO D100 #0000
DMPX(077) D1 D100 #0001
DMPX(077) D2 D100 #0002
DMPX(077) D3 D100 #0003

When CIO 0.00 is ON in the following example, DMPX(077) will find the left-
most ON bits in CIO 200 to C202 and write those locations to 3 digits in R
beginning with the second digit, as indicated by C (#0021).

5 1211 8 7 48 0
c#l o 1 o I 2 P 1 |
DMPX(077) finds the_l_l_l_/—
leftmost ON bits.
I |
I1514131211109876I54321[)

S:ClO 200 Starting digit
ClO 201 -1 | (Digit1)
CIO 202 1

'
¥a A L Y
15 12 11 8 7 4 3 0
R:D10000| 2 i A | 5 | o

407

Conversion I nstructions

Section 3-11

3-11-10 ASCII CONVERT: ASC(086)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

408

Converts 4-bit hexadecimal digits in the source word into their 8-bit ASCII
equivalents.

— | ASC(086)
IS S: Source word
Di Di: Digit designator
D D: First destination word
Variations Executed Each Cycle for ON Condition ASC(086)

Executed Once for Upward Differentiation @ASC(086)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification Not supported

Block program areas | Step program areas | Subroutines | Interrupt tasks
OK OK OK OK

S: Source Word

Up to four digits in the source word can be converted. The digits are hum-
bered 0 to 3, right to left.

Di: Digit Designator

The digit designator specifies various parameters for the conversion, as
shown in the following diagram.

Digit number: 3 21 0

—» Specifies the first digit in S to be converted (0 to 3).

—— Number of digits to be converted (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits
First byte of D to be used.

0: Rightmost byte
1: Leftmost byte

——= Parity 0: None
1: Even
2: Odd

D: First destination word

The converted ASCII data is written to the destination word(s) beginning with
the specified byte in D. Three destination words (D to D+3) will be required if 4
digits are being converted and the leftmost byte is selected as the first byte in
D. The destination words must be in the same data area.

Any bytes in the destination word(s) that are not overwritten with ASCII data
will be left unchanged.

Conversion I nstructions Section 3-11
Operand Specifications
Area S Di | D

CIO Area CIO0to CIO 6143

Work Area WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area TOO0O to T4095

Counter Area C0000 to C4095

DM Area DO to D32767

Description

Indirect DM addresses
in binary

@ DO to @ D32767

Indirect DM addresses

*DO to *D32767

in BCD
Constants - | —

Data Registers DRO to DR15
Index Registers
Indirect addressing ,IRO to ,IR15

using Index Registers | _o048 to +2047 ,IR0 to —2048 to +2047 ,IR15

DRO to DR15, IRO to IR15
JRO+(++) to ,IR15+(++)
—(=9)IR0 to, —(- -)IR15

ASC(086) treats the contents of S as 4 hexadecimal digits, converts the des-
ignated digit(s) of S into their 8-bit ASCII equivalents, and writes this data into
the destination word(s) beginning with the specified byte in D.

pil_ o F w [n I m |
First digit to convert |

Right (0)

| i
+ ¥

31 32

Parity

It is possible to specify the parity of the ASCII data for use in error control dur-
ing data transmissions. The leftmost bit of each ASCII character will be auto-
matically adjusted for even, odd, or no parity.

When no parity (0) is designated, the leftmost bit will always be zero. When
even parity (1) is designated, the leftmost bit will be adjusted so that the total
number of ON bits is even. When odd parity (2) is designated, the leftmost bit
of each ASCII character will be adjusted so that there is an odd number of ON
bits. The status of the parity bit does not affect the meaning of the ASCII code.
Examples of even parity:

When adjusted for even parity, ASCII “31” (00110001) will be “B1” (10110001:
parity bit turned ON to create an even number of ON bits); ASCIl “36”
(00110110) will be “36” (00110110: parity bit remains OFF because the hum-
ber of ON bits is already even).

409

Conversion I nstructions

Section 3-11

Examples of odd parity:

When adjusted for odd parity, ASCII “36” (00110110) will be “B6” (10110110:
parity bit turned ON to create an odd number of ON bits); ASCIlI “46”
(01000110) will be “46” (01000110: parity bit remains OFF because the num-
ber of ON bits is already odd).

Examples of Di

When two or more digits are being converted, ASC(086) will read the bytes in
S from right to left and will wrap around to the rightmost byte if necessary. The
following diagram shows some example values for Di and the conversions that
they produce.

Di: #0011 Di: #0112 Di: #0030

15 1211 87 48 0 15 1211 87 43 3 15 1211 87 43 0

$|Digit 3 ! Digit 2| Digit 1! Digit 0 s|pigit 3/ Digit 2| Digit 1! Digit 0 s|Digit 3 | Digit 2| Digit 1!Digit 0
— L]
15 87 0 15 37 3 15 37 0
D| Leftmost Rightmost | D[Leftmost D Leftmost Rightmos
D+1 Rightmost D+1 Leftmost Rightmost
Di: #0130

15 1211 87 43 0

s[pigit 3! Digit 2] Digit 1! Digit 0]
[

15 | 4 87 0

D Leftmost
D+1| Leftmost iRightmos
D+2 Rightmost
Flags
Name Label Operation
Error Flag ER ON if the content of Di is not within the specified ranges.
OFF in all other cases.
Example When CIO 0.00 is ON in the following example, ASC(086) converts three

410

hexadecimal digits in D100 (beginning with digit 1) into their ASCII equivalents
and writes this data to D200 and D201 beginning with the leftmost byte in
D200. In this case, a digit designator of #0121 specifies no parity, the starting
byte (when writing) is the leftmost byte, the number of digits to read is 3, and
the starting digit (when reading) is digit 1.

Conversion I nstructions

Section 3-11

0.00
F——asc

IS D100

Dif #0121

D D200

15 1211

Di: # 0

8 7 4

1 H 2

Number of digits

\ Starting digit

D201

3-11-11 ASCII TO HEX: HEX(162)

Converts up to 4 bytes of ASCII data in the source word to their hexadecimal
equivalents and writes these digits in the specified destination word.

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

— | HEX(162)
S S: First source word
Di Di: Digit designator
D D: Destination word
Variations Executed Each Cycle for ON Condition HEX(162)
Executed